基于标准间相关性(CRITIC)权重法和灰色关联分析的车辆驾驶模拟器运动提示算法的客观评估

Machines Pub Date : 2024-05-16 DOI:10.3390/machines12050344
Xue Jiang, Xiafei Chen, Yiyang Jiao, Lijie Zhang
{"title":"基于标准间相关性(CRITIC)权重法和灰色关联分析的车辆驾驶模拟器运动提示算法的客观评估","authors":"Xue Jiang, Xiafei Chen, Yiyang Jiao, Lijie Zhang","doi":"10.3390/machines12050344","DOIUrl":null,"url":null,"abstract":"Perception-based fidelity evaluation metrics are crucial in driving simulators, as they play a key role in the automatic tuning, assessment, and comparison of motion cueing algorithms. Nevertheless, there is presently no unified and effective evaluation framework for these algorithms. To tackle this challenge, our study initially establishes a model rooted in visual–vestibular interaction and head tilt angle perception systems. We then employ metrics like the Normalized Average Absolute Difference (NAAD), Normalized Pearson Correlation (NPC), and Estimated Delay (ED) to devise an evaluation index system. Furthermore, we use a combined approach incorporating CRITIC and gray relational analysis to ascertain the weights of these indicators. This allows us to consolidate them into a comprehensive evaluation metric that reflects the overall fidelity of motion cueing algorithms. Subjective evaluation experiments validate the reasonableness and efficacy of our proposed Perception Fidelity Evaluation (PFE) method.","PeriodicalId":509264,"journal":{"name":"Machines","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Objective Evaluation of Motion Cueing Algorithms for Vehicle Driving Simulator Based on Criteria Importance through Intercriteria Correlation (CRITIC) Weight Method Combined with Gray Correlation Analysis\",\"authors\":\"Xue Jiang, Xiafei Chen, Yiyang Jiao, Lijie Zhang\",\"doi\":\"10.3390/machines12050344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perception-based fidelity evaluation metrics are crucial in driving simulators, as they play a key role in the automatic tuning, assessment, and comparison of motion cueing algorithms. Nevertheless, there is presently no unified and effective evaluation framework for these algorithms. To tackle this challenge, our study initially establishes a model rooted in visual–vestibular interaction and head tilt angle perception systems. We then employ metrics like the Normalized Average Absolute Difference (NAAD), Normalized Pearson Correlation (NPC), and Estimated Delay (ED) to devise an evaluation index system. Furthermore, we use a combined approach incorporating CRITIC and gray relational analysis to ascertain the weights of these indicators. This allows us to consolidate them into a comprehensive evaluation metric that reflects the overall fidelity of motion cueing algorithms. Subjective evaluation experiments validate the reasonableness and efficacy of our proposed Perception Fidelity Evaluation (PFE) method.\",\"PeriodicalId\":509264,\"journal\":{\"name\":\"Machines\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/machines12050344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/machines12050344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于感知的保真度评估指标在驾驶模拟器中至关重要,因为它们在自动调整、评估和比较运动提示算法方面发挥着关键作用。然而,目前这些算法还没有统一有效的评估框架。为了应对这一挑战,我们的研究首先建立了一个植根于视觉-前庭交互和头部倾斜角度感知系统的模型。然后,我们采用归一化平均绝对差值 (NAAD)、归一化皮尔逊相关性 (NPC) 和估计延迟 (ED) 等指标来设计评估指标体系。此外,我们采用 CRITIC 和灰色关系分析相结合的方法来确定这些指标的权重。这样,我们就能将这些指标合并为一个综合评价指标,以反映运动提示算法的整体保真度。主观评估实验验证了我们提出的感知保真度评估(PFE)方法的合理性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Objective Evaluation of Motion Cueing Algorithms for Vehicle Driving Simulator Based on Criteria Importance through Intercriteria Correlation (CRITIC) Weight Method Combined with Gray Correlation Analysis
Perception-based fidelity evaluation metrics are crucial in driving simulators, as they play a key role in the automatic tuning, assessment, and comparison of motion cueing algorithms. Nevertheless, there is presently no unified and effective evaluation framework for these algorithms. To tackle this challenge, our study initially establishes a model rooted in visual–vestibular interaction and head tilt angle perception systems. We then employ metrics like the Normalized Average Absolute Difference (NAAD), Normalized Pearson Correlation (NPC), and Estimated Delay (ED) to devise an evaluation index system. Furthermore, we use a combined approach incorporating CRITIC and gray relational analysis to ascertain the weights of these indicators. This allows us to consolidate them into a comprehensive evaluation metric that reflects the overall fidelity of motion cueing algorithms. Subjective evaluation experiments validate the reasonableness and efficacy of our proposed Perception Fidelity Evaluation (PFE) method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on Micro-Pit Texture Parameter Optimization and Its Tribological Properties Determination of Energy Losses of the Crank Press Mechanism Brush Seal Performance with Ideal Gas Working Fluid under Static Rotor Condition The State of Health of Electrical Connectors Dual-Arm Obstacle Avoidance Motion Planning Based on Improved RRT Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1