黑色素瘤患者前哨淋巴结中的朗格汉斯细胞

Cancers Pub Date : 2024-05-16 DOI:10.3390/cancers16101890
G. Gerlini, Pietro Susini, S. Sestini, P. Brandani, V. Giannotti, L. Borgognoni
{"title":"黑色素瘤患者前哨淋巴结中的朗格汉斯细胞","authors":"G. Gerlini, Pietro Susini, S. Sestini, P. Brandani, V. Giannotti, L. Borgognoni","doi":"10.3390/cancers16101890","DOIUrl":null,"url":null,"abstract":"Background. Langerhans cells (LCs) are professional Dendritic Cells (DCs) involved in immunoregulatory functions. At the skin level, LCs are immature. In response to tissue injuries, they migrate to regional Lymph Nodes (LNs), reaching a full maturation state. Then, they become effective antigen-presenting cells (APCs) that induce anti-cancer responses. Notably, melanoma patients present several DC alterations in the Sentinel Lymph Node (SLN), where primary antitumoral immunity is generated. LCs are the most represented DCs subset in melanoma SLNs and are expected to play a key role in the anti-melanoma response. With this paper, we aim to review the current knowledge and future perspectives regarding LCs and melanoma. Methods. A systematic review was carried out according to the PRISMA statement using the PubMed (MEDLINE) library from January 2004 to January 2024, searching for original studies discussing LC in melanoma. Results. The final synthesis included 15 articles. Several papers revealed significant LCs–melanoma interactions. Conclusions. Melanoma immune escape mechanisms include SLN LC alterations, favoring LN metastasis arrival/homing and melanoma proliferation. The SLN LCs of melanoma patients are defective but not irreversibly, and their function may be restored by appropriate stimuli. Thus, LCs represent a promising target for future immunotherapeutic strategies and cancer vaccines.","PeriodicalId":504676,"journal":{"name":"Cancers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Langerhans Cells in Sentinel Lymph Nodes from Melanoma Patients\",\"authors\":\"G. Gerlini, Pietro Susini, S. Sestini, P. Brandani, V. Giannotti, L. Borgognoni\",\"doi\":\"10.3390/cancers16101890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background. Langerhans cells (LCs) are professional Dendritic Cells (DCs) involved in immunoregulatory functions. At the skin level, LCs are immature. In response to tissue injuries, they migrate to regional Lymph Nodes (LNs), reaching a full maturation state. Then, they become effective antigen-presenting cells (APCs) that induce anti-cancer responses. Notably, melanoma patients present several DC alterations in the Sentinel Lymph Node (SLN), where primary antitumoral immunity is generated. LCs are the most represented DCs subset in melanoma SLNs and are expected to play a key role in the anti-melanoma response. With this paper, we aim to review the current knowledge and future perspectives regarding LCs and melanoma. Methods. A systematic review was carried out according to the PRISMA statement using the PubMed (MEDLINE) library from January 2004 to January 2024, searching for original studies discussing LC in melanoma. Results. The final synthesis included 15 articles. Several papers revealed significant LCs–melanoma interactions. Conclusions. Melanoma immune escape mechanisms include SLN LC alterations, favoring LN metastasis arrival/homing and melanoma proliferation. The SLN LCs of melanoma patients are defective but not irreversibly, and their function may be restored by appropriate stimuli. Thus, LCs represent a promising target for future immunotherapeutic strategies and cancer vaccines.\",\"PeriodicalId\":504676,\"journal\":{\"name\":\"Cancers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cancers16101890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cancers16101890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景。朗格汉斯细胞(LCs)是参与免疫调节功能的专业树突状细胞(DCs)。在皮肤层面,朗格汉斯细胞尚未成熟。当组织受伤时,它们会迁移到区域淋巴结(LN),达到完全成熟状态。然后,它们成为有效的抗原递呈细胞(APC),诱导抗癌反应。值得注意的是,黑色素瘤患者的前哨淋巴结(SLN)中存在多种直流电改变,而主要的抗肿瘤免疫力就产生于前哨淋巴结。LCs 是黑色素瘤 SLN 中最具代表性的 DCs 亚群,预计将在抗黑色素瘤反应中发挥关键作用。本文旨在回顾有关 LCs 与黑色素瘤的现有知识和未来展望。方法。根据 PRISMA 声明,利用 PubMed (MEDLINE) 文库对 2004 年 1 月至 2024 年 1 月期间讨论黑色素瘤 LC 的原始研究进行了系统综述。结果。最终的综述包括 15 篇文章。多篇论文揭示了 LCs 与黑色素瘤之间的重要相互作用。结论。黑色素瘤免疫逃逸机制包括SLN LC改变,有利于LN转移到达/归巢和黑色素瘤增殖。黑色素瘤患者的SLN LCs存在缺陷,但并非不可逆转,适当的刺激可恢复其功能。因此,LCs 是未来免疫治疗策略和癌症疫苗的一个有希望的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Langerhans Cells in Sentinel Lymph Nodes from Melanoma Patients
Background. Langerhans cells (LCs) are professional Dendritic Cells (DCs) involved in immunoregulatory functions. At the skin level, LCs are immature. In response to tissue injuries, they migrate to regional Lymph Nodes (LNs), reaching a full maturation state. Then, they become effective antigen-presenting cells (APCs) that induce anti-cancer responses. Notably, melanoma patients present several DC alterations in the Sentinel Lymph Node (SLN), where primary antitumoral immunity is generated. LCs are the most represented DCs subset in melanoma SLNs and are expected to play a key role in the anti-melanoma response. With this paper, we aim to review the current knowledge and future perspectives regarding LCs and melanoma. Methods. A systematic review was carried out according to the PRISMA statement using the PubMed (MEDLINE) library from January 2004 to January 2024, searching for original studies discussing LC in melanoma. Results. The final synthesis included 15 articles. Several papers revealed significant LCs–melanoma interactions. Conclusions. Melanoma immune escape mechanisms include SLN LC alterations, favoring LN metastasis arrival/homing and melanoma proliferation. The SLN LCs of melanoma patients are defective but not irreversibly, and their function may be restored by appropriate stimuli. Thus, LCs represent a promising target for future immunotherapeutic strategies and cancer vaccines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aurora Kinase A Inhibition Potentiates Platinum and Radiation Cytotoxicity in Non-Small-Cell Lung Cancer Cells and Induces Expression of Alternative Immune Checkpoints Development and Characterization of Syngeneic Orthotopic Transplant Models of Obesity-Responsive Triple-Negative Breast Cancer in C57BL/6J Mice The Effects of Gynecological Tumor Irradiation on the Immune System A Monocentric Analysis of Implantable Ports in Cancer Treatment: Five-Year Efficacy and Safety Evaluation Drug Combination Nanoparticles Containing Gemcitabine and Paclitaxel Enable Orthotopic 4T1 Breast Tumor Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1