使用二叉 ATTRIVAR SS 控制图监控过程变异性的界面

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Algorithms Pub Date : 2024-05-16 DOI:10.3390/a17050216
João Pedro Costa Violante, Marcela A. G. Machado, Amanda dos Santos Mendes, Túlio S. Almeida
{"title":"使用二叉 ATTRIVAR SS 控制图监控过程变异性的界面","authors":"João Pedro Costa Violante, Marcela A. G. Machado, Amanda dos Santos Mendes, Túlio S. Almeida","doi":"10.3390/a17050216","DOIUrl":null,"url":null,"abstract":"Control charts are tools of paramount importance in statistical process control. They are broadly applied in monitoring processes and improving quality, as they allow the detection of special causes of variation with a significant level of accuracy. Furthermore, there are several strategies able to be employed in different contexts, all of which offer their own advantages. Therefore, this study focuses on monitoring the variability in univariate processes through variance using the Binomial version of the ATTRIVAR Same Sample S2 (B-ATTRIVAR SS S2) control chart, given that it allows coupling attribute and variable inspections (ATTRIVAR means attribute + variable), i.e., taking advantage of the cost-effectiveness of the former and the wealth of information and greater performance of the latter. Its Binomial version was used for such a purpose, since inspections are made using two attributes, and the Same Sample was used due to being submitted to both the attribute and variable stages of inspection. A computational application was developed in the R language using the Shiny package so as to create an interface to facilitate its application and use in the quality control of the production processes. Its application enables users to input process parameters and generate the B-ATTRIVAR SS control chart for monitoring the process variability with variance. By comparing the data obtained from its application with a simpler code, its performance was validated, given that its results exhibited striking similarity.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Interface to Monitor Process Variability Using the Binomial ATTRIVAR SS Control Chart\",\"authors\":\"João Pedro Costa Violante, Marcela A. G. Machado, Amanda dos Santos Mendes, Túlio S. Almeida\",\"doi\":\"10.3390/a17050216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Control charts are tools of paramount importance in statistical process control. They are broadly applied in monitoring processes and improving quality, as they allow the detection of special causes of variation with a significant level of accuracy. Furthermore, there are several strategies able to be employed in different contexts, all of which offer their own advantages. Therefore, this study focuses on monitoring the variability in univariate processes through variance using the Binomial version of the ATTRIVAR Same Sample S2 (B-ATTRIVAR SS S2) control chart, given that it allows coupling attribute and variable inspections (ATTRIVAR means attribute + variable), i.e., taking advantage of the cost-effectiveness of the former and the wealth of information and greater performance of the latter. Its Binomial version was used for such a purpose, since inspections are made using two attributes, and the Same Sample was used due to being submitted to both the attribute and variable stages of inspection. A computational application was developed in the R language using the Shiny package so as to create an interface to facilitate its application and use in the quality control of the production processes. Its application enables users to input process parameters and generate the B-ATTRIVAR SS control chart for monitoring the process variability with variance. By comparing the data obtained from its application with a simpler code, its performance was validated, given that its results exhibited striking similarity.\",\"PeriodicalId\":7636,\"journal\":{\"name\":\"Algorithms\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/a17050216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a17050216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

控制图是统计过程控制中最重要的工具。它们被广泛应用于监控过程和提高质量,因为它们可以非常准确地检测出导致变异的特殊原因。此外,在不同的情况下还可以采用多种策略,它们都有各自的优势。因此,本研究的重点是利用 ATTRIVAR Same Sample S2(B-ATTRIVAR SS S2)控制图的二项式版本,通过变异监测单变量过程中的变异性,因为它可以将属性检查和变量检查(ATTRIVAR 指属性 + 变量)结合起来,即利用前者的成本效益和后者的丰富信息和更高的性能。由于使用两个属性进行检验,因此使用了其二项式版本;由于同时进行属性和变量阶段的检验,因此使用了相同样本。使用 Shiny 软件包以 R 语言开发了一个计算应用程序,以创建一个界面,方便在生产过程的质量控制中应用和使用。通过该应用程序,用户可以输入工艺参数并生成 B-ATTRIVAR SS 控制图,以监控工艺的变异性。通过比较从其应用中获得的数据和一个更简单的代码,其性能得到了验证,因为其结果表现出惊人的相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Interface to Monitor Process Variability Using the Binomial ATTRIVAR SS Control Chart
Control charts are tools of paramount importance in statistical process control. They are broadly applied in monitoring processes and improving quality, as they allow the detection of special causes of variation with a significant level of accuracy. Furthermore, there are several strategies able to be employed in different contexts, all of which offer their own advantages. Therefore, this study focuses on monitoring the variability in univariate processes through variance using the Binomial version of the ATTRIVAR Same Sample S2 (B-ATTRIVAR SS S2) control chart, given that it allows coupling attribute and variable inspections (ATTRIVAR means attribute + variable), i.e., taking advantage of the cost-effectiveness of the former and the wealth of information and greater performance of the latter. Its Binomial version was used for such a purpose, since inspections are made using two attributes, and the Same Sample was used due to being submitted to both the attribute and variable stages of inspection. A computational application was developed in the R language using the Shiny package so as to create an interface to facilitate its application and use in the quality control of the production processes. Its application enables users to input process parameters and generate the B-ATTRIVAR SS control chart for monitoring the process variability with variance. By comparing the data obtained from its application with a simpler code, its performance was validated, given that its results exhibited striking similarity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algorithms
Algorithms Mathematics-Numerical Analysis
CiteScore
4.10
自引率
4.30%
发文量
394
审稿时长
11 weeks
期刊最新文献
EEG Channel Selection for Stroke Patient Rehabilitation Using BAT Optimizer Classification and Regression of Pinhole Corrosions on Pipelines Based on Magnetic Flux Leakage Signals Using Convolutional Neural Networks The Parallel Machine Scheduling Problem with Different Speeds and Release Times in the Ore Hauling Operation A Novel Hybrid Crow Search Arithmetic Optimization Algorithm for Solving Weighted Combined Economic Emission Dispatch with Load-Shifting Practice Normalization of Web of Science Institution Names Based on Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1