推荐系统中的变异自动编码器概览

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS ACM Computing Surveys Pub Date : 2024-05-15 DOI:10.1145/3663364
Shangsong Liang, Zhou Pan, wei liu, Jian Yin, M. de Rijke
{"title":"推荐系统中的变异自动编码器概览","authors":"Shangsong Liang, Zhou Pan, wei liu, Jian Yin, M. de Rijke","doi":"10.1145/3663364","DOIUrl":null,"url":null,"abstract":"Recommender systems have become an important instrument to connect people to information. Sparse, complex, and rapidly growing data presents new challenges to traditional recommendation algorithms. To overcome these challenges, various deep learning-based recommendation algorithms have been proposed. Among these, Variational AutoEncoder (VAE)-based recommendation methods stand out. VAEs are based on a flexible probabilistic framework, which is robust for data sparsity and compatible with other deep learning-based models for dealing with multimodal data. In addition, the deep generative structure of VAEs helps to perform Bayesian inference in an efficient manner. VAE-based recommendation algorithms have given rise to many novel graphical models and they have achieved promising performance. In this paper, we conduct a survey to systematically summarize recent VAE-based recommendation algorithms. Four frequently used characteristics of VAE-based recommendation algorithms are summarized, and a taxonomy of VAE-based recommendation algorithms is proposed. We also identify future research directions for, advanced perspectives on, and the application of VAEs in recommendation algorithms, to inspire future work on VAEs for recommender systems.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey on Variational Autoencoders in Recommender Systems\",\"authors\":\"Shangsong Liang, Zhou Pan, wei liu, Jian Yin, M. de Rijke\",\"doi\":\"10.1145/3663364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems have become an important instrument to connect people to information. Sparse, complex, and rapidly growing data presents new challenges to traditional recommendation algorithms. To overcome these challenges, various deep learning-based recommendation algorithms have been proposed. Among these, Variational AutoEncoder (VAE)-based recommendation methods stand out. VAEs are based on a flexible probabilistic framework, which is robust for data sparsity and compatible with other deep learning-based models for dealing with multimodal data. In addition, the deep generative structure of VAEs helps to perform Bayesian inference in an efficient manner. VAE-based recommendation algorithms have given rise to many novel graphical models and they have achieved promising performance. In this paper, we conduct a survey to systematically summarize recent VAE-based recommendation algorithms. Four frequently used characteristics of VAE-based recommendation algorithms are summarized, and a taxonomy of VAE-based recommendation algorithms is proposed. We also identify future research directions for, advanced perspectives on, and the application of VAEs in recommendation algorithms, to inspire future work on VAEs for recommender systems.\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3663364\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3663364","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

推荐系统已成为连接人们与信息的重要工具。稀疏、复杂和快速增长的数据给传统的推荐算法带来了新的挑战。为了克服这些挑战,人们提出了各种基于深度学习的推荐算法。其中,基于变异自动编码器(VAE)的推荐方法脱颖而出。变异自动编码器基于灵活的概率框架,对数据稀疏性具有鲁棒性,并能与其他基于深度学习的模型兼容,以处理多模态数据。此外,VAE 的深度生成结构有助于高效地执行贝叶斯推理。基于 VAE 的推荐算法催生了许多新型图形模型,并取得了可喜的性能。在本文中,我们进行了一项调查,系统地总结了近期基于 VAE 的推荐算法。本文总结了基于 VAE 的推荐算法的四个常用特征,并提出了基于 VAE 的推荐算法分类法。我们还确定了 VAE 在推荐算法中的未来研究方向、先进视角和应用,以启发未来有关推荐系统 VAE 的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Survey on Variational Autoencoders in Recommender Systems
Recommender systems have become an important instrument to connect people to information. Sparse, complex, and rapidly growing data presents new challenges to traditional recommendation algorithms. To overcome these challenges, various deep learning-based recommendation algorithms have been proposed. Among these, Variational AutoEncoder (VAE)-based recommendation methods stand out. VAEs are based on a flexible probabilistic framework, which is robust for data sparsity and compatible with other deep learning-based models for dealing with multimodal data. In addition, the deep generative structure of VAEs helps to perform Bayesian inference in an efficient manner. VAE-based recommendation algorithms have given rise to many novel graphical models and they have achieved promising performance. In this paper, we conduct a survey to systematically summarize recent VAE-based recommendation algorithms. Four frequently used characteristics of VAE-based recommendation algorithms are summarized, and a taxonomy of VAE-based recommendation algorithms is proposed. We also identify future research directions for, advanced perspectives on, and the application of VAEs in recommendation algorithms, to inspire future work on VAEs for recommender systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
期刊最新文献
A Survey on Security of UAV Swarm Networks: Attacks and Countermeasures Security and Privacy on Generative Data in AIGC: A Survey Open-Ethical AI: Advancements in Open-Source Human-Centric Neural Language Models Fog Computing Technology Research: A Retrospective Overview and Bibliometric Analysis Evaluation Methodologies in Software Protection Research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1