{"title":"使用 Transductive SVM 的半监督方法检测双级液压缸的内部泄漏","authors":"Jatin Prakash, Ankur Miglani, P. K. Kankar","doi":"10.1115/1.4065526","DOIUrl":null,"url":null,"abstract":"\n Hydraulic cylinders with higher stages of extraction are extensively used in earthmoving and heavy machines due to their longer stroke, shorter retracted length and high-end performance. The rigorous and long hours of operations make cylinders prone to internal leakage, which visually remains unnoticeable This manuscript presents the conceptualization and realization of a newly developed 210 bar high-pressure hydraulic test rig actuated by a two-stage hydraulic cylinder. Experiments have been carried out to acquire pressure signals for two different leakage conditions (3 and 5% for moderate and severe leakage respectively) in the ramp wave motion of the cylinder. A decline in the working pressure and the piston velocity by approximately 10 and 45% for these leakage conditions respectively is noted. The time-frequency analysis infers these signals contain low-frequency components. For the automated leakage detection, a new iterative probability-based, transductive semi-supervised Support Vector Machine (TS-SVM) is proposed capable of learning with limited datasets in several iterations. TS-SVM classifies the internal leakage with 100% accuracy in 4 iterations and utilises only 64% of the total training data.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"59 22","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-supervised approach using Transductive SVM for internal leakage detection in two-stage hydraulic cylinder\",\"authors\":\"Jatin Prakash, Ankur Miglani, P. K. Kankar\",\"doi\":\"10.1115/1.4065526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Hydraulic cylinders with higher stages of extraction are extensively used in earthmoving and heavy machines due to their longer stroke, shorter retracted length and high-end performance. The rigorous and long hours of operations make cylinders prone to internal leakage, which visually remains unnoticeable This manuscript presents the conceptualization and realization of a newly developed 210 bar high-pressure hydraulic test rig actuated by a two-stage hydraulic cylinder. Experiments have been carried out to acquire pressure signals for two different leakage conditions (3 and 5% for moderate and severe leakage respectively) in the ramp wave motion of the cylinder. A decline in the working pressure and the piston velocity by approximately 10 and 45% for these leakage conditions respectively is noted. The time-frequency analysis infers these signals contain low-frequency components. For the automated leakage detection, a new iterative probability-based, transductive semi-supervised Support Vector Machine (TS-SVM) is proposed capable of learning with limited datasets in several iterations. TS-SVM classifies the internal leakage with 100% accuracy in 4 iterations and utilises only 64% of the total training data.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"59 22\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4065526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Semi-supervised approach using Transductive SVM for internal leakage detection in two-stage hydraulic cylinder
Hydraulic cylinders with higher stages of extraction are extensively used in earthmoving and heavy machines due to their longer stroke, shorter retracted length and high-end performance. The rigorous and long hours of operations make cylinders prone to internal leakage, which visually remains unnoticeable This manuscript presents the conceptualization and realization of a newly developed 210 bar high-pressure hydraulic test rig actuated by a two-stage hydraulic cylinder. Experiments have been carried out to acquire pressure signals for two different leakage conditions (3 and 5% for moderate and severe leakage respectively) in the ramp wave motion of the cylinder. A decline in the working pressure and the piston velocity by approximately 10 and 45% for these leakage conditions respectively is noted. The time-frequency analysis infers these signals contain low-frequency components. For the automated leakage detection, a new iterative probability-based, transductive semi-supervised Support Vector Machine (TS-SVM) is proposed capable of learning with limited datasets in several iterations. TS-SVM classifies the internal leakage with 100% accuracy in 4 iterations and utilises only 64% of the total training data.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.