利用级联光纤法布里-佩罗干涉仪和泄漏场检测技术进行硅晶片三维轮廓重建和内部缺陷检测

Fengfeng Zhou, Xingyu Fu, Siying Chen, Changheon Han, M. Jun
{"title":"利用级联光纤法布里-佩罗干涉仪和泄漏场检测技术进行硅晶片三维轮廓重建和内部缺陷检测","authors":"Fengfeng Zhou, Xingyu Fu, Siying Chen, Changheon Han, M. Jun","doi":"10.1115/1.4065523","DOIUrl":null,"url":null,"abstract":"\n Wafer quality control is one of the important processes to improve the yield rate of semiconductor products. Profile quality and defects in the wafer are two key factors that should be taken into consideration. In this research, we introduce a method that measures the profile of the upper surface and the thickness of the wafer at the same time using an optical fiber cascaded Fabry-Pérot interferometer working at wavelength of 1550 nm. Therefore, the 3D profile of the wafer can be reconstructed directly. Testing results show that both accuracy and precision of the Fabry-Pérot interferometer are within a nanometer scale. Defects, especially those embedded inside the wafer, will be detected by monitoring the leaky field with treating wafers as slab waveguides. With the leaky field detection, defects on the lower surface of the wafer were successfully detected by monitoring the leaky field above the upper surface of the wafer. Compared with traditional methods such as radiographic testing (RT) or computed tomography (CT) testing, the proposed methods provide a cost-effective alternative for wafer quality evaluation.","PeriodicalId":507815,"journal":{"name":"Journal of Manufacturing Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Profile Reconstruction and Internal Defect Detection of Silicon Wafers Using Cascaded Fiber Optic Fabry-Pérot Interferometer and Leaky Field Detection Technologies\",\"authors\":\"Fengfeng Zhou, Xingyu Fu, Siying Chen, Changheon Han, M. Jun\",\"doi\":\"10.1115/1.4065523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Wafer quality control is one of the important processes to improve the yield rate of semiconductor products. Profile quality and defects in the wafer are two key factors that should be taken into consideration. In this research, we introduce a method that measures the profile of the upper surface and the thickness of the wafer at the same time using an optical fiber cascaded Fabry-Pérot interferometer working at wavelength of 1550 nm. Therefore, the 3D profile of the wafer can be reconstructed directly. Testing results show that both accuracy and precision of the Fabry-Pérot interferometer are within a nanometer scale. Defects, especially those embedded inside the wafer, will be detected by monitoring the leaky field with treating wafers as slab waveguides. With the leaky field detection, defects on the lower surface of the wafer were successfully detected by monitoring the leaky field above the upper surface of the wafer. Compared with traditional methods such as radiographic testing (RT) or computed tomography (CT) testing, the proposed methods provide a cost-effective alternative for wafer quality evaluation.\",\"PeriodicalId\":507815,\"journal\":{\"name\":\"Journal of Manufacturing Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

晶圆质量控制是提高半导体产品良品率的重要流程之一。晶片的轮廓质量和缺陷是需要考虑的两个关键因素。在这项研究中,我们引入了一种方法,利用波长为 1550 nm 的光纤级联法布里-佩罗干涉仪同时测量晶片上表面的轮廓和厚度。因此,可以直接重建晶片的三维轮廓。测试结果表明,法布里-佩罗干涉仪的精度和准确度都在纳米级范围内。缺陷,尤其是嵌入晶片内部的缺陷,将通过将晶片视为板状波导来监测泄漏场来检测。利用泄漏场检测,通过监测晶片上表面的泄漏场,可成功检测出晶片下表面的缺陷。与射线检测(RT)或计算机断层扫描(CT)检测等传统方法相比,所提出的方法为晶片质量评估提供了一种经济有效的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D Profile Reconstruction and Internal Defect Detection of Silicon Wafers Using Cascaded Fiber Optic Fabry-Pérot Interferometer and Leaky Field Detection Technologies
Wafer quality control is one of the important processes to improve the yield rate of semiconductor products. Profile quality and defects in the wafer are two key factors that should be taken into consideration. In this research, we introduce a method that measures the profile of the upper surface and the thickness of the wafer at the same time using an optical fiber cascaded Fabry-Pérot interferometer working at wavelength of 1550 nm. Therefore, the 3D profile of the wafer can be reconstructed directly. Testing results show that both accuracy and precision of the Fabry-Pérot interferometer are within a nanometer scale. Defects, especially those embedded inside the wafer, will be detected by monitoring the leaky field with treating wafers as slab waveguides. With the leaky field detection, defects on the lower surface of the wafer were successfully detected by monitoring the leaky field above the upper surface of the wafer. Compared with traditional methods such as radiographic testing (RT) or computed tomography (CT) testing, the proposed methods provide a cost-effective alternative for wafer quality evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Concept of error compensation for non-orthogonality in two-axis displacement measurement system utilizing single grating scale and Littrow configuration EFFECT OF SHEAR LOCALIZATION ON SURFACE RESIDUAL STRESS DISTRIBUTION IN MACHINING OF WASPALOY DRY GRINDING: A MORE SUSTAINABLE MANUFACTURING PROCESS FOR THE PRODUCTION OF AUTOMOTIVE GEARS Nanotechnology-Enabled Rapid Investment Casting of Aluminum Alloy 7075 BRIDGING DATA GAPS: A FEDERATED LEARNING APPROACH TO HEAT EMISSION PREDICTION IN LASER POWDER BED FUSION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1