在 Nd:YAG-PLD 生长 EuxY2-xO3 磷光体薄膜过程中使用 He 缓冲气调节羽流动能

Shizuka Suzuki, Takuro Dazai, T. Tokunaga, Takahisa Yamamoto, Ryuzi Katoh, M. Lippmaa, Ryota Takahashi
{"title":"在 Nd:YAG-PLD 生长 EuxY2-xO3 磷光体薄膜过程中使用 He 缓冲气调节羽流动能","authors":"Shizuka Suzuki, Takuro Dazai, T. Tokunaga, Takahisa Yamamoto, Ryuzi Katoh, M. Lippmaa, Ryota Takahashi","doi":"10.1063/5.0196987","DOIUrl":null,"url":null,"abstract":"We have investigated the He buffer gas process of moderating the kinetic energy of the pulsed laser deposition (PLD) plume during EuxY2−xO3 phosphor film growth. When using a neodymium yttrium aluminum garnet laser for PLD thin film growth, the kinetic energy of the ablation plumes can be high enough to cause the formation of point defects in the film. The buffer gas pressure is an important process parameter in PLD film growth. We find that the presence of the He buffer gas reduces the kinetic energy of the laser deposition plume through many low-angle collisions in the gas phase by a factor of 7 without reducing the deposition rate. This is because He is much lighter than any of the elements in the plume and it does not affect the composition of the oxide films. Consequently, the resputtering of the Y2O3 film surface by the plume was significantly suppressed in the presence of the He gas moderator, leading to a decrease of the defect density in the Y2O3 films. The improvement of the film quality was verified by a systematic analysis of time-resolved photoluminescence (PL) data for EuxY2−xO3 composition–gradient films. The PL lifetime and intensity of Eu0.2Y1.8O3, which shows the highest PL intensity, increased by 13.3% and 36.4%, respectively, when the He gas moderation process was used. The He buffer gas process is applicable to the PLD growth of the other oxide materials as well, where the reduction of the kinetic energy of the plume would bring the PLD process closer to the molecular beam epitaxy growth condition.","PeriodicalId":502933,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of He buffer gas for moderating the plume kinetic energy during Nd:YAG-PLD growth of EuxY2−xO3 phosphor films\",\"authors\":\"Shizuka Suzuki, Takuro Dazai, T. Tokunaga, Takahisa Yamamoto, Ryuzi Katoh, M. Lippmaa, Ryota Takahashi\",\"doi\":\"10.1063/5.0196987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have investigated the He buffer gas process of moderating the kinetic energy of the pulsed laser deposition (PLD) plume during EuxY2−xO3 phosphor film growth. When using a neodymium yttrium aluminum garnet laser for PLD thin film growth, the kinetic energy of the ablation plumes can be high enough to cause the formation of point defects in the film. The buffer gas pressure is an important process parameter in PLD film growth. We find that the presence of the He buffer gas reduces the kinetic energy of the laser deposition plume through many low-angle collisions in the gas phase by a factor of 7 without reducing the deposition rate. This is because He is much lighter than any of the elements in the plume and it does not affect the composition of the oxide films. Consequently, the resputtering of the Y2O3 film surface by the plume was significantly suppressed in the presence of the He gas moderator, leading to a decrease of the defect density in the Y2O3 films. The improvement of the film quality was verified by a systematic analysis of time-resolved photoluminescence (PL) data for EuxY2−xO3 composition–gradient films. The PL lifetime and intensity of Eu0.2Y1.8O3, which shows the highest PL intensity, increased by 13.3% and 36.4%, respectively, when the He gas moderation process was used. The He buffer gas process is applicable to the PLD growth of the other oxide materials as well, where the reduction of the kinetic energy of the plume would bring the PLD process closer to the molecular beam epitaxy growth condition.\",\"PeriodicalId\":502933,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0196987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0196987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在 EuxY2-xO3 荧光粉薄膜生长过程中调节脉冲激光沉积(PLD)羽流动能的 He 缓冲气体过程。当使用钕钇铝石榴石激光器进行 PLD 薄膜生长时,烧蚀羽流的动能会高到足以导致薄膜中形成点缺陷。缓冲气体压力是 PLD 薄膜生长过程中的一个重要工艺参数。我们发现,在不降低沉积速率的情况下,He 缓冲气体的存在可通过气相中的多次低角度碰撞将激光沉积羽流的动能降低 7 倍。这是因为 He 比羽流中的任何元素都要轻得多,而且不会影响氧化物薄膜的成分。因此,在 He 气体慢化剂存在的情况下,烟流对 Y2O3 薄膜表面的重溅射被显著抑制,从而降低了 Y2O3 薄膜的缺陷密度。通过系统分析 EuxY2-xO3 成分梯度薄膜的时间分辨光致发光 (PL) 数据,验证了薄膜质量的改善。使用 He 气体缓和工艺后,Eu0.2Y1.8O3 的 PL 寿命和强度分别提高了 13.3% 和 36.4%,而 Eu0.2Y1.8O3 的 PL 强度最高。He 缓冲气体工艺也适用于其他氧化物材料的 PLD 生长,减少羽流的动能将使 PLD 工艺更接近分子束外延生长条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The use of He buffer gas for moderating the plume kinetic energy during Nd:YAG-PLD growth of EuxY2−xO3 phosphor films
We have investigated the He buffer gas process of moderating the kinetic energy of the pulsed laser deposition (PLD) plume during EuxY2−xO3 phosphor film growth. When using a neodymium yttrium aluminum garnet laser for PLD thin film growth, the kinetic energy of the ablation plumes can be high enough to cause the formation of point defects in the film. The buffer gas pressure is an important process parameter in PLD film growth. We find that the presence of the He buffer gas reduces the kinetic energy of the laser deposition plume through many low-angle collisions in the gas phase by a factor of 7 without reducing the deposition rate. This is because He is much lighter than any of the elements in the plume and it does not affect the composition of the oxide films. Consequently, the resputtering of the Y2O3 film surface by the plume was significantly suppressed in the presence of the He gas moderator, leading to a decrease of the defect density in the Y2O3 films. The improvement of the film quality was verified by a systematic analysis of time-resolved photoluminescence (PL) data for EuxY2−xO3 composition–gradient films. The PL lifetime and intensity of Eu0.2Y1.8O3, which shows the highest PL intensity, increased by 13.3% and 36.4%, respectively, when the He gas moderation process was used. The He buffer gas process is applicable to the PLD growth of the other oxide materials as well, where the reduction of the kinetic energy of the plume would bring the PLD process closer to the molecular beam epitaxy growth condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gallium oxide semiconductor-based large volume ultrafast radiation hard spectroscopic scintillators Optical properties of ZnO nanocrystals under photo-induced electron doping Observation of transient aspects of self-sustained oscillations and the role of parallel capacitance in VO2-based planar devices Effect of grain boundary segregation of rare earth element on deformation behavior of Mg alloys Tailoring band structures and photocatalytic overall water splitting in a two-dimensional GaN/black phosphorus heterojunction: First-principles calculations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1