指定标签以检测异常值的方法

Shashank Kirti, Rajeev Pandey
{"title":"指定标签以检测异常值的方法","authors":"Shashank Kirti, Rajeev Pandey","doi":"10.9734/ajpas/2024/v26i5617","DOIUrl":null,"url":null,"abstract":"Outlier identification is a crucial field within data mining that focuses on identifying data points that significantly depart from other patterns in the data. Outlier identification may be categorized into formal and informal procedures. This article discusses informal approaches, sometimes known as labelling methods. The study focused on the analysis of real-time medical data to identify outliers using outlier labelling techniques. Various labelling approaches are used to calculate realistic situations in the dataset. Ultimately, using the anticipated outcomes of the outliers is a more suitable approach for addressing the needs of the larger populations.","PeriodicalId":8532,"journal":{"name":"Asian Journal of Probability and Statistics","volume":"23 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods of Assigning Labels to Detect Outliers\",\"authors\":\"Shashank Kirti, Rajeev Pandey\",\"doi\":\"10.9734/ajpas/2024/v26i5617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outlier identification is a crucial field within data mining that focuses on identifying data points that significantly depart from other patterns in the data. Outlier identification may be categorized into formal and informal procedures. This article discusses informal approaches, sometimes known as labelling methods. The study focused on the analysis of real-time medical data to identify outliers using outlier labelling techniques. Various labelling approaches are used to calculate realistic situations in the dataset. Ultimately, using the anticipated outcomes of the outliers is a more suitable approach for addressing the needs of the larger populations.\",\"PeriodicalId\":8532,\"journal\":{\"name\":\"Asian Journal of Probability and Statistics\",\"volume\":\"23 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/ajpas/2024/v26i5617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ajpas/2024/v26i5617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

离群点识别是数据挖掘中的一个重要领域,其重点是识别明显偏离数据中其他模式的数据点。离群点识别可分为正式程序和非正式程序。本文讨论的是非正式方法,有时也称为标签法。研究重点是分析实时医疗数据,使用离群值标记技术识别离群值。各种标注方法用于计算数据集中的现实情况。最终,使用离群值的预期结果是一种更适合解决更多人群需求的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methods of Assigning Labels to Detect Outliers
Outlier identification is a crucial field within data mining that focuses on identifying data points that significantly depart from other patterns in the data. Outlier identification may be categorized into formal and informal procedures. This article discusses informal approaches, sometimes known as labelling methods. The study focused on the analysis of real-time medical data to identify outliers using outlier labelling techniques. Various labelling approaches are used to calculate realistic situations in the dataset. Ultimately, using the anticipated outcomes of the outliers is a more suitable approach for addressing the needs of the larger populations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian Sequential Updation and Prediction of Currency in Circulation Using a Weighted Prior Assessment of Required Sample Sizes for Estimating Proportions Rainfall Pattern in Kenya: Bayesian Non-parametric Model Based on the Normalized Generalized Gamma Process Advancing Retail Predictions: Integrating Diverse Machine Learning Models for Accurate Walmart Sales Forecasting Common Fixed-Point Theorem for Expansive Mappings in Dualistic Partial Metric Spaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1