O.-A. Ampomah, R. Minkah, G. Kallah-Dagadu, E. N. N. Nortey
{"title":"估算最佳分类临界点的误分类成本调整方法","authors":"O.-A. Ampomah, R. Minkah, G. Kallah-Dagadu, E. N. N. Nortey","doi":"10.1155/2024/8082372","DOIUrl":null,"url":null,"abstract":"Classification is one of the main areas of machine learning, where the target variable is usually categorical with at least two levels. This study focuses on deducing an optimal cut-off point for continuous outcomes (e.g., predicted probabilities) resulting from binary classifiers. To achieve this aim, the study modified univariate discriminant functions by incorporating the error cost of misclassification penalties involved. By doing so, we can systematically shift the cut-off point within its measurement range till the optimal point is obtained. Extensive simulation studies were conducted to investigate the performance of the proposed method in comparison with existing classification methods under the binary logistic and Bayesian quantile regression frameworks. The simulation results indicate that logistic regression models incorporating the proposed method outperform the existing ordinary logistic regression and Bayesian regression models. We illustrate the proposed method with a practical dataset from the finance industry that assesses default status in home equity.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Cost of Misclassification Adjustment Approach for Estimating Optimal Cut-Off Point for Classification\",\"authors\":\"O.-A. Ampomah, R. Minkah, G. Kallah-Dagadu, E. N. N. Nortey\",\"doi\":\"10.1155/2024/8082372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification is one of the main areas of machine learning, where the target variable is usually categorical with at least two levels. This study focuses on deducing an optimal cut-off point for continuous outcomes (e.g., predicted probabilities) resulting from binary classifiers. To achieve this aim, the study modified univariate discriminant functions by incorporating the error cost of misclassification penalties involved. By doing so, we can systematically shift the cut-off point within its measurement range till the optimal point is obtained. Extensive simulation studies were conducted to investigate the performance of the proposed method in comparison with existing classification methods under the binary logistic and Bayesian quantile regression frameworks. The simulation results indicate that logistic regression models incorporating the proposed method outperform the existing ordinary logistic regression and Bayesian regression models. We illustrate the proposed method with a practical dataset from the finance industry that assesses default status in home equity.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/8082372\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/8082372","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Cost of Misclassification Adjustment Approach for Estimating Optimal Cut-Off Point for Classification
Classification is one of the main areas of machine learning, where the target variable is usually categorical with at least two levels. This study focuses on deducing an optimal cut-off point for continuous outcomes (e.g., predicted probabilities) resulting from binary classifiers. To achieve this aim, the study modified univariate discriminant functions by incorporating the error cost of misclassification penalties involved. By doing so, we can systematically shift the cut-off point within its measurement range till the optimal point is obtained. Extensive simulation studies were conducted to investigate the performance of the proposed method in comparison with existing classification methods under the binary logistic and Bayesian quantile regression frameworks. The simulation results indicate that logistic regression models incorporating the proposed method outperform the existing ordinary logistic regression and Bayesian regression models. We illustrate the proposed method with a practical dataset from the finance industry that assesses default status in home equity.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.