离散面板数据的中位回归

IF 1.1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Statistical Computation and Simulation Pub Date : 2024-05-15 DOI:10.1080/00949655.2024.2352527
Alfonso Russo, Alessio Farcomeni, Marco Geraci
{"title":"离散面板数据的中位回归","authors":"Alfonso Russo, Alessio Farcomeni, Marco Geraci","doi":"10.1080/00949655.2024.2352527","DOIUrl":null,"url":null,"abstract":"A BSTRACT : We propose a novel method for quantile regression for discrete longitudinal data. The approach is based on the notion of conditional mid-quantiles, which have good theoretical properties even in the presence of ties, and a Ridge-type pe-nalised framework to accommodate dependent data. We illustrate the methods with a simulation study and an original application to the use of macroprudential policies in more than one hundred countries over a period of fifteen years.","PeriodicalId":50040,"journal":{"name":"Journal of Statistical Computation and Simulation","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mid-quantile regression for discrete panel data\",\"authors\":\"Alfonso Russo, Alessio Farcomeni, Marco Geraci\",\"doi\":\"10.1080/00949655.2024.2352527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A BSTRACT : We propose a novel method for quantile regression for discrete longitudinal data. The approach is based on the notion of conditional mid-quantiles, which have good theoretical properties even in the presence of ties, and a Ridge-type pe-nalised framework to accommodate dependent data. We illustrate the methods with a simulation study and an original application to the use of macroprudential policies in more than one hundred countries over a period of fifteen years.\",\"PeriodicalId\":50040,\"journal\":{\"name\":\"Journal of Statistical Computation and Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Computation and Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00949655.2024.2352527\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Computation and Simulation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00949655.2024.2352527","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

摘要:我们为离散纵向数据的量值回归提出了一种新方法。该方法基于条件中位数的概念,即使在存在联系的情况下也具有良好的理论特性,同时基于一个 Ridge 类型的均衡框架,以适应依赖性数据。我们通过模拟研究和对一百多个国家十五年来宏观审慎政策使用情况的原创应用来说明这些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mid-quantile regression for discrete panel data
A BSTRACT : We propose a novel method for quantile regression for discrete longitudinal data. The approach is based on the notion of conditional mid-quantiles, which have good theoretical properties even in the presence of ties, and a Ridge-type pe-nalised framework to accommodate dependent data. We illustrate the methods with a simulation study and an original application to the use of macroprudential policies in more than one hundred countries over a period of fifteen years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Computation and Simulation
Journal of Statistical Computation and Simulation 数学-计算机:跨学科应用
CiteScore
2.30
自引率
8.30%
发文量
156
审稿时长
4-8 weeks
期刊介绍: Journal of Statistical Computation and Simulation ( JSCS ) publishes significant and original work in areas of statistics which are related to or dependent upon the computer. Fields covered include computer algorithms related to probability or statistics, studies in statistical inference by means of simulation techniques, and implementation of interactive statistical systems. JSCS does not consider applications of statistics to other fields, except as illustrations of the use of the original statistics presented. Accepted papers should ideally appeal to a wide audience of statisticians and provoke real applications of theoretical constructions.
期刊最新文献
Multivariate normality tests with two-step monotone missing data: a critical review with emphasis on the different methods of handling missing values Improved Liu-ridge-type estimates for the beta regression model Variable selection and estimation for recurrent event model with covariates subject to measurement error Comparison of approaches for local testing with functional test statistics Depth for samples of sets with applications to testing equality in distribution of two samples of random sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1