用于增强电池健康分析的多尺度建模:长寿之路

Kaiyi Yang, Lisheng Zhang, Wentao Wang, Chengwu Long, Shichun Yang, Tao Zhu, Xinhua Liu
{"title":"用于增强电池健康分析的多尺度建模:长寿之路","authors":"Kaiyi Yang,&nbsp;Lisheng Zhang,&nbsp;Wentao Wang,&nbsp;Chengwu Long,&nbsp;Shichun Yang,&nbsp;Tao Zhu,&nbsp;Xinhua Liu","doi":"10.1002/cnl2.124","DOIUrl":null,"url":null,"abstract":"<p>The issues of health assessment and lifespan prediction have always been prominent challenges in the large-scale application of lithium-ion batteries (LIBs). This paper reviews the multiscale modeling techniques and their applications in battery health analysis, including atomic scale computational chemistry, particle scale reaction simulations, electrode scale structural models, macroscale electrochemical models, and data-driven models at the system level. Multiscale modeling offers a profound insight into material behavior and the aging process of batteries, thereby providing a valuable reference for both estimation and management strategies of battery state of health. To extend the battery lifespan, the utilization of artificial intelligence for material discovery and manufacturing process optimization, the implementation of end-cloud collaborative battery management systems, and the design of a multiscale simulation integration platform are considered. A management framework aimed at extending battery life is further proposed. This framework offers a promising roadmap for addressing health analysis challenges in LIBs, ultimately leading to more reliable, efficient, and durable solutions for next-generation batteries.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.124","citationCount":"0","resultStr":"{\"title\":\"Multiscale modeling for enhanced battery health analysis: Pathways to longevity\",\"authors\":\"Kaiyi Yang,&nbsp;Lisheng Zhang,&nbsp;Wentao Wang,&nbsp;Chengwu Long,&nbsp;Shichun Yang,&nbsp;Tao Zhu,&nbsp;Xinhua Liu\",\"doi\":\"10.1002/cnl2.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The issues of health assessment and lifespan prediction have always been prominent challenges in the large-scale application of lithium-ion batteries (LIBs). This paper reviews the multiscale modeling techniques and their applications in battery health analysis, including atomic scale computational chemistry, particle scale reaction simulations, electrode scale structural models, macroscale electrochemical models, and data-driven models at the system level. Multiscale modeling offers a profound insight into material behavior and the aging process of batteries, thereby providing a valuable reference for both estimation and management strategies of battery state of health. To extend the battery lifespan, the utilization of artificial intelligence for material discovery and manufacturing process optimization, the implementation of end-cloud collaborative battery management systems, and the design of a multiscale simulation integration platform are considered. A management framework aimed at extending battery life is further proposed. This framework offers a promising roadmap for addressing health analysis challenges in LIBs, ultimately leading to more reliable, efficient, and durable solutions for next-generation batteries.</p>\",\"PeriodicalId\":100214,\"journal\":{\"name\":\"Carbon Neutralization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.124\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Neutralization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

健康评估和寿命预测问题一直是锂离子电池(LIB)大规模应用过程中面临的突出挑战。本文综述了多尺度建模技术及其在电池健康分析中的应用,包括原子尺度计算化学、粒子尺度反应模拟、电极尺度结构模型、宏观尺度电化学模型以及系统级数据驱动模型。多尺度建模可深入了解电池的材料行为和老化过程,从而为电池健康状况的评估和管理策略提供有价值的参考。为了延长电池寿命,我们考虑了利用人工智能进行材料发现和制造工艺优化、实施端云协作电池管理系统以及设计多尺度仿真集成平台。还进一步提出了一个旨在延长电池寿命的管理框架。该框架为解决锂离子电池的健康分析难题提供了一个前景广阔的路线图,最终将为下一代电池提供更可靠、更高效、更耐用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiscale modeling for enhanced battery health analysis: Pathways to longevity

The issues of health assessment and lifespan prediction have always been prominent challenges in the large-scale application of lithium-ion batteries (LIBs). This paper reviews the multiscale modeling techniques and their applications in battery health analysis, including atomic scale computational chemistry, particle scale reaction simulations, electrode scale structural models, macroscale electrochemical models, and data-driven models at the system level. Multiscale modeling offers a profound insight into material behavior and the aging process of batteries, thereby providing a valuable reference for both estimation and management strategies of battery state of health. To extend the battery lifespan, the utilization of artificial intelligence for material discovery and manufacturing process optimization, the implementation of end-cloud collaborative battery management systems, and the design of a multiscale simulation integration platform are considered. A management framework aimed at extending battery life is further proposed. This framework offers a promising roadmap for addressing health analysis challenges in LIBs, ultimately leading to more reliable, efficient, and durable solutions for next-generation batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A systematic study of switching, optoelectronics, and gas‐sensitive properties of PCF‐graphene‐based nanodevices: Insights from DFT study Issue Information Front Cover: Carbon Neutralization, Volume 3, Issue 4, July 2024 Inside Front Cover Image: Carbon Neutralization, Volume 3, Issue 4, July 2024 Back Cover Image: Carbon Neutralization, Volume 3, Issue 4, July 2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1