{"title":"基于背板间距调整的永磁涡流结构电磁特性分析","authors":"Yipeng Wu, Teng Wang, Tao Song, Wenxiao Guo","doi":"10.3390/machines12050343","DOIUrl":null,"url":null,"abstract":"To address the problem of problematic spray design inside mining anchor-digging equipment, a switching seal using a permanent magnet eddy current drive is initially presented here. The layer model of the permanent magnet eddy current structure is established, the subdomain analysis model is introduced, the permanent magnet eddy current structure is divided into six regions along the axial direction, and the boundary equations are established at the interfaces of each region. The vector magnetic potential equations in each region are deduced, along with the electromagnetic torque and axial force equations. The computational results are compared and analyzed with the results of finite element simulation, verifying the accuracy of the theoretical model. The design of experiments is used to verify the feasibility of the switching seal using the permanent magnet eddy current structure.","PeriodicalId":509264,"journal":{"name":"Machines","volume":"128 45","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic Characterization of Permanent Magnet Eddy Current Structures Based on Backplane Distance Adjustment\",\"authors\":\"Yipeng Wu, Teng Wang, Tao Song, Wenxiao Guo\",\"doi\":\"10.3390/machines12050343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the problem of problematic spray design inside mining anchor-digging equipment, a switching seal using a permanent magnet eddy current drive is initially presented here. The layer model of the permanent magnet eddy current structure is established, the subdomain analysis model is introduced, the permanent magnet eddy current structure is divided into six regions along the axial direction, and the boundary equations are established at the interfaces of each region. The vector magnetic potential equations in each region are deduced, along with the electromagnetic torque and axial force equations. The computational results are compared and analyzed with the results of finite element simulation, verifying the accuracy of the theoretical model. The design of experiments is used to verify the feasibility of the switching seal using the permanent magnet eddy current structure.\",\"PeriodicalId\":509264,\"journal\":{\"name\":\"Machines\",\"volume\":\"128 45\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/machines12050343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/machines12050343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electromagnetic Characterization of Permanent Magnet Eddy Current Structures Based on Backplane Distance Adjustment
To address the problem of problematic spray design inside mining anchor-digging equipment, a switching seal using a permanent magnet eddy current drive is initially presented here. The layer model of the permanent magnet eddy current structure is established, the subdomain analysis model is introduced, the permanent magnet eddy current structure is divided into six regions along the axial direction, and the boundary equations are established at the interfaces of each region. The vector magnetic potential equations in each region are deduced, along with the electromagnetic torque and axial force equations. The computational results are compared and analyzed with the results of finite element simulation, verifying the accuracy of the theoretical model. The design of experiments is used to verify the feasibility of the switching seal using the permanent magnet eddy current structure.