{"title":"改进三元纳米流体流过刚性表面时的滑移机制和对流热影响","authors":"K. Gangadhar, M. Sangeetha Rani, A. Wakif","doi":"10.1142/s021797922550064x","DOIUrl":null,"url":null,"abstract":"This study of electro-magneto-hydrodynamics has great significance due to its numerous applications like chromatography, fluid pumping, micro coolers and fluid stirring thermal reactors and flow regulation in fluidics systems. Subject to upper functions on electrical magnetic field, the consequences of electromagnetic initiation into ternary nanofluids flow through the Riga plate were noticed. Furthermore, this ternary hybrid nanofluid flow was based on the effect on slip condition, uniform heat source, convective energy and thermal radiation. The ternary hybrid nanofluid was built from the scattering of silver, copper and copper oxide nanoparticles by this base fluid blood. This phenomenon had been formed by the model of the system in partial differential equations; it was made easy in the dimensionless nonlinear structure of ordinary differential equations by employing comparison substitutions. This result on the acquired set of the differential equations was simulated over the bvp4c method. It has been discovered that the ternary hybrid nanofluid velocity is essentially lower along the differing numbers of permeable media, although it amplifies along the upshot on the Hartmann number. Moreover, an enhanced heat transport rate of up to 14% was marked for the triple nanoparticle nanofluid by relating it to another nanofluid and establishing an excellent behavior on triple nanoparticle nanofluids.","PeriodicalId":509298,"journal":{"name":"International Journal of Modern Physics B","volume":"28 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved slip mechanism and convective heat impact for ternary nanofluidic flowing past a riga surface\",\"authors\":\"K. Gangadhar, M. Sangeetha Rani, A. Wakif\",\"doi\":\"10.1142/s021797922550064x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study of electro-magneto-hydrodynamics has great significance due to its numerous applications like chromatography, fluid pumping, micro coolers and fluid stirring thermal reactors and flow regulation in fluidics systems. Subject to upper functions on electrical magnetic field, the consequences of electromagnetic initiation into ternary nanofluids flow through the Riga plate were noticed. Furthermore, this ternary hybrid nanofluid flow was based on the effect on slip condition, uniform heat source, convective energy and thermal radiation. The ternary hybrid nanofluid was built from the scattering of silver, copper and copper oxide nanoparticles by this base fluid blood. This phenomenon had been formed by the model of the system in partial differential equations; it was made easy in the dimensionless nonlinear structure of ordinary differential equations by employing comparison substitutions. This result on the acquired set of the differential equations was simulated over the bvp4c method. It has been discovered that the ternary hybrid nanofluid velocity is essentially lower along the differing numbers of permeable media, although it amplifies along the upshot on the Hartmann number. Moreover, an enhanced heat transport rate of up to 14% was marked for the triple nanoparticle nanofluid by relating it to another nanofluid and establishing an excellent behavior on triple nanoparticle nanofluids.\",\"PeriodicalId\":509298,\"journal\":{\"name\":\"International Journal of Modern Physics B\",\"volume\":\"28 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s021797922550064x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021797922550064x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved slip mechanism and convective heat impact for ternary nanofluidic flowing past a riga surface
This study of electro-magneto-hydrodynamics has great significance due to its numerous applications like chromatography, fluid pumping, micro coolers and fluid stirring thermal reactors and flow regulation in fluidics systems. Subject to upper functions on electrical magnetic field, the consequences of electromagnetic initiation into ternary nanofluids flow through the Riga plate were noticed. Furthermore, this ternary hybrid nanofluid flow was based on the effect on slip condition, uniform heat source, convective energy and thermal radiation. The ternary hybrid nanofluid was built from the scattering of silver, copper and copper oxide nanoparticles by this base fluid blood. This phenomenon had been formed by the model of the system in partial differential equations; it was made easy in the dimensionless nonlinear structure of ordinary differential equations by employing comparison substitutions. This result on the acquired set of the differential equations was simulated over the bvp4c method. It has been discovered that the ternary hybrid nanofluid velocity is essentially lower along the differing numbers of permeable media, although it amplifies along the upshot on the Hartmann number. Moreover, an enhanced heat transport rate of up to 14% was marked for the triple nanoparticle nanofluid by relating it to another nanofluid and establishing an excellent behavior on triple nanoparticle nanofluids.