揭示力量:在银行营销数据集上通过决策树分类对数据挖掘工具进行比较分析

Elif Akkaya, Safiye Turgay
{"title":"揭示力量:在银行营销数据集上通过决策树分类对数据挖掘工具进行比较分析","authors":"Elif Akkaya, Safiye Turgay","doi":"10.37394/23205.2024.23.9","DOIUrl":null,"url":null,"abstract":"The importance of data mining is growing rapidly, so the comparison of data mining tools has become important. Data mining is the process of extracting valuable data from large data to meet the need to see relationships between data and to make predictions when necessary. This study delves into the dynamic realm of data mining, presenting a comprehensive comparison of prominent data mining tools through the lens of the decision tree algorithm. The research focuses on the application of these tools to the BankMarketing dataset, a rich repository of financial interactions. The objective is to unveil the efficacy and nuances of each tool in the context of predictive modelling, emphasizing key metrics such as accuracy, precision, recall, and F1-score. Through meticulous experimentation and evaluation, this analysis sheds light on the distinct strengths and limitations of each data-mining tool, providing valuable insights for practitioners and researchers in the field. The findings contribute to a deeper understanding of tool selection considerations and pave the way for enhanced decision-making in data mining applications. Classification is a data mining task that learns from a collection of data in order to accurately predict new cases. The dataset used in this study is the Bank Marketing dataset from the UCI machine-learning repository. The bank marketing dataset contains 45211 instances and 17 features. The bank marketing dataset is related to the direct marketing campaigns (phone calls) of a Portuguese banking institution and the classification objective is to predict whether customers will subscribe to a deposit (variable y) in a period of time. To make the classification, the machine learning technique can be used. In this study, the Decision Tree classification algorithm is used. Knime, Orange, Tanagra, Rapidminerve, Weka yield mining tools are used to analyse the classification algorithm.","PeriodicalId":332148,"journal":{"name":"WSEAS TRANSACTIONS ON COMPUTERS","volume":"33 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Power: A Comparative Analysis of Data Mining Tools through Decision Tree Classification on the Bank Marketing Dataset\",\"authors\":\"Elif Akkaya, Safiye Turgay\",\"doi\":\"10.37394/23205.2024.23.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The importance of data mining is growing rapidly, so the comparison of data mining tools has become important. Data mining is the process of extracting valuable data from large data to meet the need to see relationships between data and to make predictions when necessary. This study delves into the dynamic realm of data mining, presenting a comprehensive comparison of prominent data mining tools through the lens of the decision tree algorithm. The research focuses on the application of these tools to the BankMarketing dataset, a rich repository of financial interactions. The objective is to unveil the efficacy and nuances of each tool in the context of predictive modelling, emphasizing key metrics such as accuracy, precision, recall, and F1-score. Through meticulous experimentation and evaluation, this analysis sheds light on the distinct strengths and limitations of each data-mining tool, providing valuable insights for practitioners and researchers in the field. The findings contribute to a deeper understanding of tool selection considerations and pave the way for enhanced decision-making in data mining applications. Classification is a data mining task that learns from a collection of data in order to accurately predict new cases. The dataset used in this study is the Bank Marketing dataset from the UCI machine-learning repository. The bank marketing dataset contains 45211 instances and 17 features. The bank marketing dataset is related to the direct marketing campaigns (phone calls) of a Portuguese banking institution and the classification objective is to predict whether customers will subscribe to a deposit (variable y) in a period of time. To make the classification, the machine learning technique can be used. In this study, the Decision Tree classification algorithm is used. Knime, Orange, Tanagra, Rapidminerve, Weka yield mining tools are used to analyse the classification algorithm.\",\"PeriodicalId\":332148,\"journal\":{\"name\":\"WSEAS TRANSACTIONS ON COMPUTERS\",\"volume\":\"33 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS TRANSACTIONS ON COMPUTERS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23205.2024.23.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON COMPUTERS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23205.2024.23.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据挖掘的重要性与日俱增,因此数据挖掘工具的比较变得非常重要。数据挖掘是从海量数据中提取有价值数据的过程,以满足查看数据之间关系的需要,并在必要时进行预测。本研究深入探讨了数据挖掘的动态领域,通过决策树算法的视角对著名的数据挖掘工具进行了全面比较。研究重点是将这些工具应用于银行营销数据集,这是一个丰富的金融互动资料库。目的是揭示每种工具在预测建模方面的功效和细微差别,并强调准确率、精确度、召回率和 F1 分数等关键指标。通过细致的实验和评估,本分析揭示了每种数据挖掘工具的独特优势和局限性,为该领域的从业人员和研究人员提供了宝贵的见解。这些发现有助于加深对工具选择注意事项的理解,并为数据挖掘应用中的强化决策铺平了道路。分类是一项数据挖掘任务,它从数据集合中学习,以便准确预测新案例。本研究使用的数据集是 UCI 机器学习库中的银行营销数据集。银行营销数据集包含 45211 个实例和 17 个特征。银行营销数据集与葡萄牙一家银行机构的直接营销活动(电话)有关,分类目标是预测客户是否会在一段时间内认购存款(变量 y)。为了进行分类,可以使用机器学习技术。本研究采用了决策树分类算法。分析分类算法时使用了 Knime、Orange、Tanagra、Rapidminerve 和 Weka 等产量挖掘工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling the Power: A Comparative Analysis of Data Mining Tools through Decision Tree Classification on the Bank Marketing Dataset
The importance of data mining is growing rapidly, so the comparison of data mining tools has become important. Data mining is the process of extracting valuable data from large data to meet the need to see relationships between data and to make predictions when necessary. This study delves into the dynamic realm of data mining, presenting a comprehensive comparison of prominent data mining tools through the lens of the decision tree algorithm. The research focuses on the application of these tools to the BankMarketing dataset, a rich repository of financial interactions. The objective is to unveil the efficacy and nuances of each tool in the context of predictive modelling, emphasizing key metrics such as accuracy, precision, recall, and F1-score. Through meticulous experimentation and evaluation, this analysis sheds light on the distinct strengths and limitations of each data-mining tool, providing valuable insights for practitioners and researchers in the field. The findings contribute to a deeper understanding of tool selection considerations and pave the way for enhanced decision-making in data mining applications. Classification is a data mining task that learns from a collection of data in order to accurately predict new cases. The dataset used in this study is the Bank Marketing dataset from the UCI machine-learning repository. The bank marketing dataset contains 45211 instances and 17 features. The bank marketing dataset is related to the direct marketing campaigns (phone calls) of a Portuguese banking institution and the classification objective is to predict whether customers will subscribe to a deposit (variable y) in a period of time. To make the classification, the machine learning technique can be used. In this study, the Decision Tree classification algorithm is used. Knime, Orange, Tanagra, Rapidminerve, Weka yield mining tools are used to analyse the classification algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Medical Image Classification using a Many to Many Relation, Multilayered Fuzzy Systems and AI Aspects of Symmetry in Petri Nets Chaos in Order: Applying ML, NLP, and Chaos Theory in Open Source Intelligence for Counter-Terrorism Combinatorial Optimization of Engineering Systems based on Diagrammatic Design Federated Learning: Attacks and Defenses, Rewards, Energy Efficiency: Past, Present and Future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1