H2O-CO2-CO 混合物的气体发射率和吸收率

IF 2.8 Q2 THERMODYNAMICS Heat Transfer Pub Date : 2024-05-13 DOI:10.1002/htj.23081
Yanan Camaraza-Medina
{"title":"H2O-CO2-CO 混合物的气体发射率和吸收率","authors":"Yanan Camaraza-Medina","doi":"10.1002/htj.23081","DOIUrl":null,"url":null,"abstract":"<p>In this work, an approximate solution is given to compute the gas emissivities and absorptivities for H<sub>2</sub>O–CO<sub>2</sub>–CO mixtures. The proposed model is valid for temperatures from 300 to 2700 K and pressure path-length <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>P</mi>\n \n <mi>x</mi>\n </msub>\n \n <mi>L</mi>\n \n <mo>)</mo>\n </mrow>\n <annotation> $({P}_{x}L)$</annotation>\n </semantics></math> from 0.06 to 40 atm m. In the calculation of the analytical solution (AS), the nonlinear methods of Galerkin and Ritz were implemented based on the residual solution of the differential roots of the Finite Element Method. For each point value <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>P</mi>\n \n <mi>x</mi>\n </msub>\n \n <mi>L</mi>\n \n <mo>;</mo>\n \n <mi>T</mi>\n \n <mo>)</mo>\n </mrow>\n <annotation> $({P}_{x}L;T)$</annotation>\n </semantics></math> using the AS, the spectral absorptivity <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>a</mi>\n \n <mi>λ</mi>\n </msub>\n </mrow>\n <annotation> ${a}_{\\lambda }$</annotation>\n </semantics></math> and emissivity <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ε</mi>\n \n <mi>λ</mi>\n </msub>\n </mrow>\n <annotation> ${\\varepsilon }_{\\lambda }$</annotation>\n </semantics></math> were determined, while for the gas mixture the emissivity <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ε</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n <annotation> ${\\varepsilon }_{m}$</annotation>\n </semantics></math> and absorptivity <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>a</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n <annotation> ${a}_{m}$</annotation>\n </semantics></math> were computed using the Hottel Graphical Method (HGM) and the proposed method. In the emissivity calculations, the HGM shows less adjustment, with values of ±20% and ±15% for 79.1% and 56.2% of the available analytical data, while the proposed model correlates adequately with the available data, showing an average deviation of ±15% and ±10% for 91.4% and 76.2% of the available data. In the absorptivity estimations, the HGM shows a weaker fit, with values of ±20% and ±15% for 77.3% and 51.4% of the experimental data, respectively, while the proposed model shows good agreement with the available data, with a mean deviation of ±15% and ±10% for 89.8% and 74.1% of the test made.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gas emissivities and absorptivities for H2O–CO2–CO mixtures\",\"authors\":\"Yanan Camaraza-Medina\",\"doi\":\"10.1002/htj.23081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, an approximate solution is given to compute the gas emissivities and absorptivities for H<sub>2</sub>O–CO<sub>2</sub>–CO mixtures. The proposed model is valid for temperatures from 300 to 2700 K and pressure path-length <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>P</mi>\\n \\n <mi>x</mi>\\n </msub>\\n \\n <mi>L</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n <annotation> $({P}_{x}L)$</annotation>\\n </semantics></math> from 0.06 to 40 atm m. In the calculation of the analytical solution (AS), the nonlinear methods of Galerkin and Ritz were implemented based on the residual solution of the differential roots of the Finite Element Method. For each point value <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n \\n <msub>\\n <mi>P</mi>\\n \\n <mi>x</mi>\\n </msub>\\n \\n <mi>L</mi>\\n \\n <mo>;</mo>\\n \\n <mi>T</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n <annotation> $({P}_{x}L;T)$</annotation>\\n </semantics></math> using the AS, the spectral absorptivity <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>a</mi>\\n \\n <mi>λ</mi>\\n </msub>\\n </mrow>\\n <annotation> ${a}_{\\\\lambda }$</annotation>\\n </semantics></math> and emissivity <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ε</mi>\\n \\n <mi>λ</mi>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\varepsilon }_{\\\\lambda }$</annotation>\\n </semantics></math> were determined, while for the gas mixture the emissivity <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ε</mi>\\n \\n <mi>m</mi>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\varepsilon }_{m}$</annotation>\\n </semantics></math> and absorptivity <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>a</mi>\\n \\n <mi>m</mi>\\n </msub>\\n </mrow>\\n <annotation> ${a}_{m}$</annotation>\\n </semantics></math> were computed using the Hottel Graphical Method (HGM) and the proposed method. In the emissivity calculations, the HGM shows less adjustment, with values of ±20% and ±15% for 79.1% and 56.2% of the available analytical data, while the proposed model correlates adequately with the available data, showing an average deviation of ±15% and ±10% for 91.4% and 76.2% of the available data. In the absorptivity estimations, the HGM shows a weaker fit, with values of ±20% and ±15% for 77.3% and 51.4% of the experimental data, respectively, while the proposed model shows good agreement with the available data, with a mean deviation of ±15% and ±10% for 89.8% and 74.1% of the test made.</p>\",\"PeriodicalId\":44939,\"journal\":{\"name\":\"Heat Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/htj.23081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,给出了计算 H2O-CO2-CO 混合物气体发射率和吸收率的近似解决方案。提出的模型适用于 300 至 2700 K 的温度和 0.06 至 40 atm m 的压力路径长度。在计算解析解(AS)时,根据有限元法微分根的残差解,采用了 Galerkin 和 Ritz 的非线性方法。对于使用 AS 的每个点值,都确定了光谱吸收率和发射率,而对于气体混合物,则使用 Hottel Graphical Method(HGM)和建议的方法计算了发射率和吸收率。在发射率计算中,HGM 的调整较少,79.1% 和 56.2%的可用分析数据的值分别为 ±20% 和 ±15%,而提议的模型与可用数据充分相关,91.4% 和 76.2%的可用数据的平均偏差分别为 ±15% 和 ±10%。在吸收率估算中,HGM 的拟合度较弱,在 77.3% 和 51.4% 的实验数据中分别显示出 ±20% 和 ±15% 的值,而拟议模型与现有数据显示出良好的一致性,在 89.8% 和 74.1% 的测试中显示出 ±15% 和 ±10% 的平均偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gas emissivities and absorptivities for H2O–CO2–CO mixtures

In this work, an approximate solution is given to compute the gas emissivities and absorptivities for H2O–CO2–CO mixtures. The proposed model is valid for temperatures from 300 to 2700 K and pressure path-length ( P x L ) $({P}_{x}L)$ from 0.06 to 40 atm m. In the calculation of the analytical solution (AS), the nonlinear methods of Galerkin and Ritz were implemented based on the residual solution of the differential roots of the Finite Element Method. For each point value ( P x L ; T ) $({P}_{x}L;T)$ using the AS, the spectral absorptivity a λ ${a}_{\lambda }$ and emissivity ε λ ${\varepsilon }_{\lambda }$ were determined, while for the gas mixture the emissivity ε m ${\varepsilon }_{m}$ and absorptivity a m ${a}_{m}$ were computed using the Hottel Graphical Method (HGM) and the proposed method. In the emissivity calculations, the HGM shows less adjustment, with values of ±20% and ±15% for 79.1% and 56.2% of the available analytical data, while the proposed model correlates adequately with the available data, showing an average deviation of ±15% and ±10% for 91.4% and 76.2% of the available data. In the absorptivity estimations, the HGM shows a weaker fit, with values of ±20% and ±15% for 77.3% and 51.4% of the experimental data, respectively, while the proposed model shows good agreement with the available data, with a mean deviation of ±15% and ±10% for 89.8% and 74.1% of the test made.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
期刊最新文献
Issue Information Characteristics of thermo‐hydraulic flow inside corrugated channels: Comprehensive and comparative review Unsteady flow past an impulsively started infinite vertical plate in presence of thermal stratification and chemical reaction A comparison between Hankel and Fourier methods for photothermal radiometry analysis Recent advancements in flow control using plasma actuators and plasma vortex generators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1