利用嵌套主动机器学习改进目标质谱数据分析

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) Pub Date : 2024-05-12 DOI:10.1002/aisy.202300773
Duran Bao, Qingbo Shu, Bo Ning, Michael Tang, Yubing Liu, Noel Wong, Zhengming Ding, Zizhan Zheng, Christopher J. Lyon, Tony Hu, Jia Fan
{"title":"利用嵌套主动机器学习改进目标质谱数据分析","authors":"Duran Bao,&nbsp;Qingbo Shu,&nbsp;Bo Ning,&nbsp;Michael Tang,&nbsp;Yubing Liu,&nbsp;Noel Wong,&nbsp;Zhengming Ding,&nbsp;Zizhan Zheng,&nbsp;Christopher J. Lyon,&nbsp;Tony Hu,&nbsp;Jia Fan","doi":"10.1002/aisy.202300773","DOIUrl":null,"url":null,"abstract":"<p>Targeted mass spectrometry (MS) holds promise for precise protein and protein-representative peptide identification and quantification, enhancing disease diagnosis. However, its clinical application is hindered by complex data analysis and expert review requirements. It is hypothesized that machine learning (ML) models can automate data analysis to accelerate the clinical application of MS. The approach involves an ML-driven pipeline that extracts statistical and morphological features from an MS target region and feeds these features into ML algorithms to generate and assess predictive models. The findings demonstrate ML prediction models exhibit superior performance when trained on extracted features versus raw spectra intensity data and that random forest models exhibit robust classification performance in both internal and external validation datasets. These models remain effective across varying training dataset sizes and positive sample rates and are enhanced by a nested active learning approach. This approach can thus revolutionize clinical MS applications.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202300773","citationCount":"0","resultStr":"{\"title\":\"Improving Targeted Mass Spectrometry Data Analysis with Nested Active Machine Learning\",\"authors\":\"Duran Bao,&nbsp;Qingbo Shu,&nbsp;Bo Ning,&nbsp;Michael Tang,&nbsp;Yubing Liu,&nbsp;Noel Wong,&nbsp;Zhengming Ding,&nbsp;Zizhan Zheng,&nbsp;Christopher J. Lyon,&nbsp;Tony Hu,&nbsp;Jia Fan\",\"doi\":\"10.1002/aisy.202300773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Targeted mass spectrometry (MS) holds promise for precise protein and protein-representative peptide identification and quantification, enhancing disease diagnosis. However, its clinical application is hindered by complex data analysis and expert review requirements. It is hypothesized that machine learning (ML) models can automate data analysis to accelerate the clinical application of MS. The approach involves an ML-driven pipeline that extracts statistical and morphological features from an MS target region and feeds these features into ML algorithms to generate and assess predictive models. The findings demonstrate ML prediction models exhibit superior performance when trained on extracted features versus raw spectra intensity data and that random forest models exhibit robust classification performance in both internal and external validation datasets. These models remain effective across varying training dataset sizes and positive sample rates and are enhanced by a nested active learning approach. This approach can thus revolutionize clinical MS applications.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202300773\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202300773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202300773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

靶向质谱(MS)有望实现蛋白质和蛋白质代表肽的精确鉴定和定量,从而提高疾病诊断水平。然而,复杂的数据分析和专家审查要求阻碍了其临床应用。假设机器学习(ML)模型可以自动进行数据分析,从而加快 MS 的临床应用。该方法涉及一个 ML 驱动的管道,该管道从 MS 靶区提取统计和形态特征,并将这些特征输入 ML 算法,以生成和评估预测模型。研究结果表明,ML 预测模型在提取的特征与原始光谱强度数据的对比训练中表现出更优越的性能,随机森林模型在内部和外部验证数据集中都表现出稳健的分类性能。这些模型在不同的训练数据集规模和阳性样本率下依然有效,并通过嵌套主动学习方法得到增强。因此,这种方法可以彻底改变临床 MS 应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Targeted Mass Spectrometry Data Analysis with Nested Active Machine Learning

Targeted mass spectrometry (MS) holds promise for precise protein and protein-representative peptide identification and quantification, enhancing disease diagnosis. However, its clinical application is hindered by complex data analysis and expert review requirements. It is hypothesized that machine learning (ML) models can automate data analysis to accelerate the clinical application of MS. The approach involves an ML-driven pipeline that extracts statistical and morphological features from an MS target region and feeds these features into ML algorithms to generate and assess predictive models. The findings demonstrate ML prediction models exhibit superior performance when trained on extracted features versus raw spectra intensity data and that random forest models exhibit robust classification performance in both internal and external validation datasets. These models remain effective across varying training dataset sizes and positive sample rates and are enhanced by a nested active learning approach. This approach can thus revolutionize clinical MS applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Masthead Reconstructing Soft Robotic Touch via In-Finger Vision A Cable-Actuated Soft Manipulator for Dexterous Grasping Based on Deep Reinforcement Learning Liquid Metal Chameleon Tongues: Modulating Surface Tension and Phase Transition to Enable Bioinspired Soft Actuators Reprogrammable, Recyclable Origami Robots Controlled by Magnetic Fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1