pFedBASC:利用区块链辅助半中心化框架进行个性化联合学习

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Future Internet Pub Date : 2024-05-11 DOI:10.3390/fi16050164
Yu Zhang, Xiaowei Peng, Hequn Xian
{"title":"pFedBASC:利用区块链辅助半中心化框架进行个性化联合学习","authors":"Yu Zhang, Xiaowei Peng, Hequn Xian","doi":"10.3390/fi16050164","DOIUrl":null,"url":null,"abstract":"As network technology advances, there is an increasing need for a trusted new-generation information management system. Blockchain technology provides a decentralized, transparent, and tamper-proof foundation. Meanwhile, data islands have become a significant obstacle for machine learning applications. Although federated learning (FL) ensures data privacy protection, server-side security concerns persist. Traditional methods have employed a blockchain system in FL frameworks to maintain a tamper-proof global model database. In this context, we propose a novel personalized federated learning (pFL) with blockchain-assisted semi-centralized framework, pFedBASC. This approach, tailored for the Internet of Things (IoT) scenarios, constructs a semi-centralized IoT structure and utilizes trusted network connections to support FL. We concentrate on designing the aggregation process and FL algorithm, as well as the block structure. To address data heterogeneity and communication costs, we propose a pFL method called FedHype. In this method, each client is assigned a compact hypernetwork (HN) alongside a normal target network (TN) whose parameters are generated by the HN. Clients pull together other clients’ HNs for local aggregation to personalize their TNs, reducing communication costs. Furthermore, FedHype can be integrated with other existing algorithms, enhancing its functionality. Experimental results reveal that pFedBASC effectively tackles data heterogeneity issues while maintaining positive accuracy, communication efficiency, and robustness.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pFedBASC: Personalized Federated Learning with Blockchain-Assisted Semi-Centralized Framework\",\"authors\":\"Yu Zhang, Xiaowei Peng, Hequn Xian\",\"doi\":\"10.3390/fi16050164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As network technology advances, there is an increasing need for a trusted new-generation information management system. Blockchain technology provides a decentralized, transparent, and tamper-proof foundation. Meanwhile, data islands have become a significant obstacle for machine learning applications. Although federated learning (FL) ensures data privacy protection, server-side security concerns persist. Traditional methods have employed a blockchain system in FL frameworks to maintain a tamper-proof global model database. In this context, we propose a novel personalized federated learning (pFL) with blockchain-assisted semi-centralized framework, pFedBASC. This approach, tailored for the Internet of Things (IoT) scenarios, constructs a semi-centralized IoT structure and utilizes trusted network connections to support FL. We concentrate on designing the aggregation process and FL algorithm, as well as the block structure. To address data heterogeneity and communication costs, we propose a pFL method called FedHype. In this method, each client is assigned a compact hypernetwork (HN) alongside a normal target network (TN) whose parameters are generated by the HN. Clients pull together other clients’ HNs for local aggregation to personalize their TNs, reducing communication costs. Furthermore, FedHype can be integrated with other existing algorithms, enhancing its functionality. Experimental results reveal that pFedBASC effectively tackles data heterogeneity issues while maintaining positive accuracy, communication efficiency, and robustness.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi16050164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16050164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着网络技术的发展,人们越来越需要可信的新一代信息管理系统。区块链技术提供了一个去中心化、透明和防篡改的基础。同时,数据孤岛已成为机器学习应用的一大障碍。虽然联合学习(FL)能确保数据隐私得到保护,但服务器端的安全问题依然存在。传统的方法是在联合学习框架中采用区块链系统来维护一个防篡改的全局模型数据库。在此背景下,我们提出了一种新颖的个性化联合学习(pFL)区块链辅助半集中式框架--pFedBASC。这种方法专为物联网(IoT)场景量身定制,构建了一个半中心化的物联网结构,并利用可信网络连接来支持联合学习。我们专注于设计聚合过程和 FL 算法,以及区块结构。为了解决数据异构和通信成本问题,我们提出了一种名为 FedHype 的 pFL 方法。在这种方法中,每个客户端都被分配了一个紧凑的超网络(HN)和一个正常的目标网络(TN),TN 的参数由 HN 生成。客户端将其他客户端的 HN 拉到一起进行本地聚合,以个性化其 TN,从而降低通信成本。此外,FedHype 还可与其他现有算法集成,从而增强其功能。实验结果表明,pFedBASC 能有效解决数据异构问题,同时保持积极的准确性、通信效率和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pFedBASC: Personalized Federated Learning with Blockchain-Assisted Semi-Centralized Framework
As network technology advances, there is an increasing need for a trusted new-generation information management system. Blockchain technology provides a decentralized, transparent, and tamper-proof foundation. Meanwhile, data islands have become a significant obstacle for machine learning applications. Although federated learning (FL) ensures data privacy protection, server-side security concerns persist. Traditional methods have employed a blockchain system in FL frameworks to maintain a tamper-proof global model database. In this context, we propose a novel personalized federated learning (pFL) with blockchain-assisted semi-centralized framework, pFedBASC. This approach, tailored for the Internet of Things (IoT) scenarios, constructs a semi-centralized IoT structure and utilizes trusted network connections to support FL. We concentrate on designing the aggregation process and FL algorithm, as well as the block structure. To address data heterogeneity and communication costs, we propose a pFL method called FedHype. In this method, each client is assigned a compact hypernetwork (HN) alongside a normal target network (TN) whose parameters are generated by the HN. Clients pull together other clients’ HNs for local aggregation to personalize their TNs, reducing communication costs. Furthermore, FedHype can be integrated with other existing algorithms, enhancing its functionality. Experimental results reveal that pFedBASC effectively tackles data heterogeneity issues while maintaining positive accuracy, communication efficiency, and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
期刊最新文献
Testing Stimulus Equivalence in Transformer-Based Agents Dynamic Fashion Video Synthesis from Static Imagery A Survey on Emerging Blockchain Technology Platforms for Securing the Internet of Things Cross-Domain Fake News Detection Using a Prompt-Based Approach Energy Efficiency and Load Optimization in Heterogeneous Networks through Dynamic Sleep Strategies: A Constraint-Based Optimization Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1