{"title":"pFedBASC:利用区块链辅助半中心化框架进行个性化联合学习","authors":"Yu Zhang, Xiaowei Peng, Hequn Xian","doi":"10.3390/fi16050164","DOIUrl":null,"url":null,"abstract":"As network technology advances, there is an increasing need for a trusted new-generation information management system. Blockchain technology provides a decentralized, transparent, and tamper-proof foundation. Meanwhile, data islands have become a significant obstacle for machine learning applications. Although federated learning (FL) ensures data privacy protection, server-side security concerns persist. Traditional methods have employed a blockchain system in FL frameworks to maintain a tamper-proof global model database. In this context, we propose a novel personalized federated learning (pFL) with blockchain-assisted semi-centralized framework, pFedBASC. This approach, tailored for the Internet of Things (IoT) scenarios, constructs a semi-centralized IoT structure and utilizes trusted network connections to support FL. We concentrate on designing the aggregation process and FL algorithm, as well as the block structure. To address data heterogeneity and communication costs, we propose a pFL method called FedHype. In this method, each client is assigned a compact hypernetwork (HN) alongside a normal target network (TN) whose parameters are generated by the HN. Clients pull together other clients’ HNs for local aggregation to personalize their TNs, reducing communication costs. Furthermore, FedHype can be integrated with other existing algorithms, enhancing its functionality. Experimental results reveal that pFedBASC effectively tackles data heterogeneity issues while maintaining positive accuracy, communication efficiency, and robustness.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pFedBASC: Personalized Federated Learning with Blockchain-Assisted Semi-Centralized Framework\",\"authors\":\"Yu Zhang, Xiaowei Peng, Hequn Xian\",\"doi\":\"10.3390/fi16050164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As network technology advances, there is an increasing need for a trusted new-generation information management system. Blockchain technology provides a decentralized, transparent, and tamper-proof foundation. Meanwhile, data islands have become a significant obstacle for machine learning applications. Although federated learning (FL) ensures data privacy protection, server-side security concerns persist. Traditional methods have employed a blockchain system in FL frameworks to maintain a tamper-proof global model database. In this context, we propose a novel personalized federated learning (pFL) with blockchain-assisted semi-centralized framework, pFedBASC. This approach, tailored for the Internet of Things (IoT) scenarios, constructs a semi-centralized IoT structure and utilizes trusted network connections to support FL. We concentrate on designing the aggregation process and FL algorithm, as well as the block structure. To address data heterogeneity and communication costs, we propose a pFL method called FedHype. In this method, each client is assigned a compact hypernetwork (HN) alongside a normal target network (TN) whose parameters are generated by the HN. Clients pull together other clients’ HNs for local aggregation to personalize their TNs, reducing communication costs. Furthermore, FedHype can be integrated with other existing algorithms, enhancing its functionality. Experimental results reveal that pFedBASC effectively tackles data heterogeneity issues while maintaining positive accuracy, communication efficiency, and robustness.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi16050164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16050164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
pFedBASC: Personalized Federated Learning with Blockchain-Assisted Semi-Centralized Framework
As network technology advances, there is an increasing need for a trusted new-generation information management system. Blockchain technology provides a decentralized, transparent, and tamper-proof foundation. Meanwhile, data islands have become a significant obstacle for machine learning applications. Although federated learning (FL) ensures data privacy protection, server-side security concerns persist. Traditional methods have employed a blockchain system in FL frameworks to maintain a tamper-proof global model database. In this context, we propose a novel personalized federated learning (pFL) with blockchain-assisted semi-centralized framework, pFedBASC. This approach, tailored for the Internet of Things (IoT) scenarios, constructs a semi-centralized IoT structure and utilizes trusted network connections to support FL. We concentrate on designing the aggregation process and FL algorithm, as well as the block structure. To address data heterogeneity and communication costs, we propose a pFL method called FedHype. In this method, each client is assigned a compact hypernetwork (HN) alongside a normal target network (TN) whose parameters are generated by the HN. Clients pull together other clients’ HNs for local aggregation to personalize their TNs, reducing communication costs. Furthermore, FedHype can be integrated with other existing algorithms, enhancing its functionality. Experimental results reveal that pFedBASC effectively tackles data heterogeneity issues while maintaining positive accuracy, communication efficiency, and robustness.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.