{"title":"利用基于因果结构的强化学习,为电动汽车充电网络的社交互联网提供可重构智能表面增强型动态资源配置","authors":"Yuzhu Zhang, Hao Xu","doi":"10.3390/fi16050165","DOIUrl":null,"url":null,"abstract":"Charging stations and electric vehicle (EV) charging networks signify a significant advancement in technology as a frontier application of the Social Internet of Things (SIoT), presenting both challenges and opportunities for current 6G wireless networks. One primary challenge in this integration is limited wireless network resources, particularly when serving a large number of users within distributed EV charging networks in the SIoT. Factors such as congestion during EV travel, varying EV user preferences, and uncertainties in decision-making regarding charging station resources significantly impact system operation and network resource allocation. To address these challenges, this paper develops a novel framework harnessing the potential of emerging technologies, specifically reconfigurable intelligent surfaces (RISs) and causal-structure-enhanced asynchronous advantage actor–critic (A3C) reinforcement learning techniques. This framework aims to optimize resource allocation, thereby enhancing communication support within EV charging networks. Through the integration of RIS technology, which enables control over electromagnetic waves, and the application of causal reinforcement learning algorithms, the framework dynamically adjusts resource allocation strategies to accommodate evolving conditions in EV charging networks. An essential aspect of this framework is its ability to simultaneously meet real-world social requirements, such as ensuring efficient utilization of network resources. Numerical simulation results validate the effectiveness and adaptability of this approach in improving wireless network efficiency and enhancing user experience within the SIoT context. Through these simulations, it becomes evident that the developed framework offers promising solutions to the challenges posed by integrating the SIoT with EV charging networks.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconfigurable-Intelligent-Surface-Enhanced Dynamic Resource Allocation for the Social Internet of Electric Vehicle Charging Networks with Causal-Structure-Based Reinforcement Learning\",\"authors\":\"Yuzhu Zhang, Hao Xu\",\"doi\":\"10.3390/fi16050165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Charging stations and electric vehicle (EV) charging networks signify a significant advancement in technology as a frontier application of the Social Internet of Things (SIoT), presenting both challenges and opportunities for current 6G wireless networks. One primary challenge in this integration is limited wireless network resources, particularly when serving a large number of users within distributed EV charging networks in the SIoT. Factors such as congestion during EV travel, varying EV user preferences, and uncertainties in decision-making regarding charging station resources significantly impact system operation and network resource allocation. To address these challenges, this paper develops a novel framework harnessing the potential of emerging technologies, specifically reconfigurable intelligent surfaces (RISs) and causal-structure-enhanced asynchronous advantage actor–critic (A3C) reinforcement learning techniques. This framework aims to optimize resource allocation, thereby enhancing communication support within EV charging networks. Through the integration of RIS technology, which enables control over electromagnetic waves, and the application of causal reinforcement learning algorithms, the framework dynamically adjusts resource allocation strategies to accommodate evolving conditions in EV charging networks. An essential aspect of this framework is its ability to simultaneously meet real-world social requirements, such as ensuring efficient utilization of network resources. Numerical simulation results validate the effectiveness and adaptability of this approach in improving wireless network efficiency and enhancing user experience within the SIoT context. Through these simulations, it becomes evident that the developed framework offers promising solutions to the challenges posed by integrating the SIoT with EV charging networks.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi16050165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16050165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Reconfigurable-Intelligent-Surface-Enhanced Dynamic Resource Allocation for the Social Internet of Electric Vehicle Charging Networks with Causal-Structure-Based Reinforcement Learning
Charging stations and electric vehicle (EV) charging networks signify a significant advancement in technology as a frontier application of the Social Internet of Things (SIoT), presenting both challenges and opportunities for current 6G wireless networks. One primary challenge in this integration is limited wireless network resources, particularly when serving a large number of users within distributed EV charging networks in the SIoT. Factors such as congestion during EV travel, varying EV user preferences, and uncertainties in decision-making regarding charging station resources significantly impact system operation and network resource allocation. To address these challenges, this paper develops a novel framework harnessing the potential of emerging technologies, specifically reconfigurable intelligent surfaces (RISs) and causal-structure-enhanced asynchronous advantage actor–critic (A3C) reinforcement learning techniques. This framework aims to optimize resource allocation, thereby enhancing communication support within EV charging networks. Through the integration of RIS technology, which enables control over electromagnetic waves, and the application of causal reinforcement learning algorithms, the framework dynamically adjusts resource allocation strategies to accommodate evolving conditions in EV charging networks. An essential aspect of this framework is its ability to simultaneously meet real-world social requirements, such as ensuring efficient utilization of network resources. Numerical simulation results validate the effectiveness and adaptability of this approach in improving wireless network efficiency and enhancing user experience within the SIoT context. Through these simulations, it becomes evident that the developed framework offers promising solutions to the challenges posed by integrating the SIoT with EV charging networks.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.