M. Chiriacò, E. Primiceri, Antonio Turco, Valeria Garzarelli, Giulia Siciliano, Alessia Foscarini, Ahmed Alsadig, Annunziata Carbonara, Benedetta Stampone, Gianluca Trotta, Marco Cereda, Marco de Tullio, Giuseppe Gigli, F. Ferrara
{"title":"TITAN 项目:用于免疫疗法的微流控与传感工具","authors":"M. Chiriacò, E. Primiceri, Antonio Turco, Valeria Garzarelli, Giulia Siciliano, Alessia Foscarini, Ahmed Alsadig, Annunziata Carbonara, Benedetta Stampone, Gianluca Trotta, Marco Cereda, Marco de Tullio, Giuseppe Gigli, F. Ferrara","doi":"10.3390/proceedings2024097214","DOIUrl":null,"url":null,"abstract":": The TITAN project aims to improve immunotherapy, targeting the efficiency of methods to obtain genetically engineered T cells. Immunotherapy has achieved great success in clinical trials, but it is currently very expensive in terms of time required for analysis, reagents, and samples. TITAN aims to the continuous sampling of critical quality attributes, in order to quickly recognize deviations from the desired range and take appropriate corrective actions on process parameters for an optimal outcome. To achieve its aims, TITAN is currently developing microfluidic and sensing tools for the accurate and efficient real-time monitoring of the T cells amplification process.","PeriodicalId":517679,"journal":{"name":"Eurosensors 2023","volume":" 30","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TITAN Project: Microfluidic and Sensing Tools for Immunotherapy\",\"authors\":\"M. Chiriacò, E. Primiceri, Antonio Turco, Valeria Garzarelli, Giulia Siciliano, Alessia Foscarini, Ahmed Alsadig, Annunziata Carbonara, Benedetta Stampone, Gianluca Trotta, Marco Cereda, Marco de Tullio, Giuseppe Gigli, F. Ferrara\",\"doi\":\"10.3390/proceedings2024097214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The TITAN project aims to improve immunotherapy, targeting the efficiency of methods to obtain genetically engineered T cells. Immunotherapy has achieved great success in clinical trials, but it is currently very expensive in terms of time required for analysis, reagents, and samples. TITAN aims to the continuous sampling of critical quality attributes, in order to quickly recognize deviations from the desired range and take appropriate corrective actions on process parameters for an optimal outcome. To achieve its aims, TITAN is currently developing microfluidic and sensing tools for the accurate and efficient real-time monitoring of the T cells amplification process.\",\"PeriodicalId\":517679,\"journal\":{\"name\":\"Eurosensors 2023\",\"volume\":\" 30\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurosensors 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/proceedings2024097214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurosensors 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/proceedings2024097214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
:TITAN 项目旨在改进免疫疗法,目标是提高获取基因工程 T 细胞方法的效率。免疫疗法在临床试验中取得了巨大成功,但目前在分析、试剂和样本所需的时间方面非常昂贵。TITAN 的目标是对关键质量属性进行连续采样,以便快速识别与预期范围的偏差,并对工艺参数采取适当的纠正措施,以获得最佳结果。为实现其目标,TITAN 目前正在开发微流控和传感工具,用于准确、高效地实时监控 T 细胞扩增过程。
TITAN Project: Microfluidic and Sensing Tools for Immunotherapy
: The TITAN project aims to improve immunotherapy, targeting the efficiency of methods to obtain genetically engineered T cells. Immunotherapy has achieved great success in clinical trials, but it is currently very expensive in terms of time required for analysis, reagents, and samples. TITAN aims to the continuous sampling of critical quality attributes, in order to quickly recognize deviations from the desired range and take appropriate corrective actions on process parameters for an optimal outcome. To achieve its aims, TITAN is currently developing microfluidic and sensing tools for the accurate and efficient real-time monitoring of the T cells amplification process.