与历史无关的动态分区:有序数据结构中的操作顺序隐私

Michael A. Bender, Martín Farach-Colton, Michael T. Goodrich, Hanna Komlós
{"title":"与历史无关的动态分区:有序数据结构中的操作顺序隐私","authors":"Michael A. Bender, Martín Farach-Colton, Michael T. Goodrich, Hanna Komlós","doi":"10.1145/3651609","DOIUrl":null,"url":null,"abstract":"A data structure is history independent if its internal representation reveals nothing about the history of operations beyond what can be determined from the current contents of the data structure. History independence is typically viewed as a security or privacy guarantee, with the intent being to minimize risks incurred by a security breach or audit. Despite widespread advances in history independence, there is an important data-structural primitive that previous work has been unable to replace with an equivalent history-independent alternative---dynamic partitioning. In dynamic partitioning, we are given a dynamic set S of ordered elements and a size-parameter B, and the objective is to maintain a partition of S into ordered groups, each of size Θ(B). Dynamic partitioning is important throughout computer science, with applications to B-tree rebalancing, write-optimized dictionaries, log-structured merge trees, other external-memory indexes, geometric and spatial data structures, cache-oblivious data structures, and order-maintenance data structures. The lack of a history-independent dynamic-partitioning primitive has meant that designers of history-independent data structures have had to resort to complex alternatives. In this paper, we achieve history-independent dynamic partitioning. Our algorithm runs asymptotically optimally against an oblivious adversary, processing each insert/delete with O(1) operations in expectation and O(B log N/loglog N) with high probability in set size N.","PeriodicalId":498157,"journal":{"name":"Proceedings of the ACM on Management of Data","volume":" 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"History-Independent Dynamic Partitioning: Operation-Order Privacy in Ordered Data Structures\",\"authors\":\"Michael A. Bender, Martín Farach-Colton, Michael T. Goodrich, Hanna Komlós\",\"doi\":\"10.1145/3651609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A data structure is history independent if its internal representation reveals nothing about the history of operations beyond what can be determined from the current contents of the data structure. History independence is typically viewed as a security or privacy guarantee, with the intent being to minimize risks incurred by a security breach or audit. Despite widespread advances in history independence, there is an important data-structural primitive that previous work has been unable to replace with an equivalent history-independent alternative---dynamic partitioning. In dynamic partitioning, we are given a dynamic set S of ordered elements and a size-parameter B, and the objective is to maintain a partition of S into ordered groups, each of size Θ(B). Dynamic partitioning is important throughout computer science, with applications to B-tree rebalancing, write-optimized dictionaries, log-structured merge trees, other external-memory indexes, geometric and spatial data structures, cache-oblivious data structures, and order-maintenance data structures. The lack of a history-independent dynamic-partitioning primitive has meant that designers of history-independent data structures have had to resort to complex alternatives. In this paper, we achieve history-independent dynamic partitioning. Our algorithm runs asymptotically optimally against an oblivious adversary, processing each insert/delete with O(1) operations in expectation and O(B log N/loglog N) with high probability in set size N.\",\"PeriodicalId\":498157,\"journal\":{\"name\":\"Proceedings of the ACM on Management of Data\",\"volume\":\" 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Management of Data\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.1145/3651609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Management of Data","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1145/3651609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果一个数据结构的内部表示没有揭示任何操作的历史,而只能根据数据结构的当前内容来确定,那么这个数据结构就是独立于历史的。历史独立性通常被视为一种安全或隐私保证,目的是最大限度地降低安全漏洞或审计带来的风险。尽管在历史独立性方面取得了广泛的进展,但有一种重要的数据结构基本原理,以往的工作却无法用与历史无关的等效替代方法来替代--动态分区。在动态分区中,我们给定一个由有序元素组成的动态集合 S 和一个大小参数 B,目标是将 S 划分为有序分组,每个分组的大小为 Θ(B)。动态分区在整个计算机科学中都很重要,在 B 树再平衡、写优化字典、日志结构合并树、其他外部内存索引、几何和空间数据结构、无缓存数据结构和有序维护数据结构中都有应用。由于缺乏独立于历史的动态分区原型,独立于历史的数据结构设计者不得不采用复杂的替代方案。在本文中,我们实现了与历史无关的动态分区。我们的算法在面对遗忘对手时运行渐近最优,每次插入/删除的期望运算量为 O(1),在集合大小为 N 时的高概率运算量为 O(B log N/log N)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
History-Independent Dynamic Partitioning: Operation-Order Privacy in Ordered Data Structures
A data structure is history independent if its internal representation reveals nothing about the history of operations beyond what can be determined from the current contents of the data structure. History independence is typically viewed as a security or privacy guarantee, with the intent being to minimize risks incurred by a security breach or audit. Despite widespread advances in history independence, there is an important data-structural primitive that previous work has been unable to replace with an equivalent history-independent alternative---dynamic partitioning. In dynamic partitioning, we are given a dynamic set S of ordered elements and a size-parameter B, and the objective is to maintain a partition of S into ordered groups, each of size Θ(B). Dynamic partitioning is important throughout computer science, with applications to B-tree rebalancing, write-optimized dictionaries, log-structured merge trees, other external-memory indexes, geometric and spatial data structures, cache-oblivious data structures, and order-maintenance data structures. The lack of a history-independent dynamic-partitioning primitive has meant that designers of history-independent data structures have had to resort to complex alternatives. In this paper, we achieve history-independent dynamic partitioning. Our algorithm runs asymptotically optimally against an oblivious adversary, processing each insert/delete with O(1) operations in expectation and O(B log N/loglog N) with high probability in set size N.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Verification of Unary Communicating Datalog Programs Postulates for Provenance: Instance-based provenance for first-order logic Tight Lower Bounds for Directed Cut Sparsification and Distributed Min-Cut Containment of Graph Queries Modulo Schema Bag Semantics Conjunctive Query Containment. Four Small Steps Towards Undecidability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1