用于查询处理的快速矩阵乘法

Xiao Hu
{"title":"用于查询处理的快速矩阵乘法","authors":"Xiao Hu","doi":"10.1145/3651599","DOIUrl":null,"url":null,"abstract":"This paper studies how to use fast matrix multiplication to speed up query processing. As observed, computing a two-table join and then projecting away the join attribute is essentially the Boolean matrix multiplication problem, which can be significantly improved with fast matrix multiplication. Moving beyond this basic two-table query, we introduce output-sensitive algorithms for general join-project queries using fast matrix multiplication. These algorithms have achieved a polynomially large improvement over the classic Yannakakis framework. To the best of our knowledge, this is the first theoretical improvement for general acyclic join-project queries since 1981.","PeriodicalId":498157,"journal":{"name":"Proceedings of the ACM on Management of Data","volume":" 45","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Matrix Multiplication for Query Processing\",\"authors\":\"Xiao Hu\",\"doi\":\"10.1145/3651599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies how to use fast matrix multiplication to speed up query processing. As observed, computing a two-table join and then projecting away the join attribute is essentially the Boolean matrix multiplication problem, which can be significantly improved with fast matrix multiplication. Moving beyond this basic two-table query, we introduce output-sensitive algorithms for general join-project queries using fast matrix multiplication. These algorithms have achieved a polynomially large improvement over the classic Yannakakis framework. To the best of our knowledge, this is the first theoretical improvement for general acyclic join-project queries since 1981.\",\"PeriodicalId\":498157,\"journal\":{\"name\":\"Proceedings of the ACM on Management of Data\",\"volume\":\" 45\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Management of Data\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.1145/3651599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Management of Data","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1145/3651599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了如何利用快速矩阵乘法来加快查询处理速度。据观察,计算双表连接然后投影出连接属性本质上是布尔矩阵乘法问题,而快速矩阵乘法可以显著改善这一问题。除了这种基本的双表查询,我们还介绍了使用快速矩阵乘法进行一般连接-投影查询的输出敏感算法。与经典的 Yannakakis 框架相比,这些算法取得了多项式上的巨大进步。据我们所知,这是自 1981 年以来对一般无循环连接项目查询的首次理论改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast Matrix Multiplication for Query Processing
This paper studies how to use fast matrix multiplication to speed up query processing. As observed, computing a two-table join and then projecting away the join attribute is essentially the Boolean matrix multiplication problem, which can be significantly improved with fast matrix multiplication. Moving beyond this basic two-table query, we introduce output-sensitive algorithms for general join-project queries using fast matrix multiplication. These algorithms have achieved a polynomially large improvement over the classic Yannakakis framework. To the best of our knowledge, this is the first theoretical improvement for general acyclic join-project queries since 1981.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Verification of Unary Communicating Datalog Programs Postulates for Provenance: Instance-based provenance for first-order logic Tight Lower Bounds for Directed Cut Sparsification and Distributed Min-Cut Containment of Graph Queries Modulo Schema Bag Semantics Conjunctive Query Containment. Four Small Steps Towards Undecidability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1