用于氢能源的有效热回收氨热解系统的数值模拟

IF 2.1 Q2 ENGINEERING, MULTIDISCIPLINARY Inventions Pub Date : 2024-05-10 DOI:10.3390/inventions9030056
Jian Tiong Lim, E. Ng, Hamid Saeedipour, Hiang Kwee Lee
{"title":"用于氢能源的有效热回收氨热解系统的数值模拟","authors":"Jian Tiong Lim, E. Ng, Hamid Saeedipour, Hiang Kwee Lee","doi":"10.3390/inventions9030056","DOIUrl":null,"url":null,"abstract":"This paper proposes a solution to address the challenges of high storage and transport costs associated with using hydrogen (H2) as an energy source. It suggests utilizing ammonia (NH3) as a hydrogen carrier to produce H2 onsite for hydrogen gas turbines. NH3 offers higher volumetric hydrogen density compared to liquid H2, potentially reducing shipping costs by 40%. The process involves NH3 pyrolysis, which utilizes the heat waste from exhaust gas generated by gas turbines to produce H2 and nitrogen (N2). Numerical simulations were conducted to design and understand the behaviour of the heat recapture NH3 decomposition system. The design considerations included the concept of the number of transfer units and heat exchanger efficiency, achieving a heat recapture system efficiency of up to 91%. The simulation of NH3 decomposition was performed using ANSYS, a commercial simulation software, considering wall surface reactions, turbulent flow, and chemical reaction. Parameters such as activation energy and pre-exponential factor were provided by a study utilizing a nickel wire for NH3 decomposition experiments. The conversion of NH3 reached up to 94% via a nickel-based catalyst within a temperature range of 823 K to 923 K which is the exhaust gas temperature range. Various factors were considered to compare the efficiency of the system, including the mass flow of NH3, operating gauge pressure, mass flow of exhaust gas, among others. Result showed that pressure would not affect the conversion of NH3 at temperatures above 800 K, thus a lower amount of energy is required for a compression purpose in this approach. The conversion is maintained at 94% to 97% when lower activation energy is applied via a ruthenium-based catalyst. Overall, this study showed the feasibility of utilizing convective heat transfer from exhaust gas in hydrogen production by NH3 pyrolysis, and this will further enhance the development of NH3 as the potential H2 carrier for onsite production in hydrogen power generation.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation of Effective Heat Recapture Ammonia Pyrolysis System for Hydrogen Energy\",\"authors\":\"Jian Tiong Lim, E. Ng, Hamid Saeedipour, Hiang Kwee Lee\",\"doi\":\"10.3390/inventions9030056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a solution to address the challenges of high storage and transport costs associated with using hydrogen (H2) as an energy source. It suggests utilizing ammonia (NH3) as a hydrogen carrier to produce H2 onsite for hydrogen gas turbines. NH3 offers higher volumetric hydrogen density compared to liquid H2, potentially reducing shipping costs by 40%. The process involves NH3 pyrolysis, which utilizes the heat waste from exhaust gas generated by gas turbines to produce H2 and nitrogen (N2). Numerical simulations were conducted to design and understand the behaviour of the heat recapture NH3 decomposition system. The design considerations included the concept of the number of transfer units and heat exchanger efficiency, achieving a heat recapture system efficiency of up to 91%. The simulation of NH3 decomposition was performed using ANSYS, a commercial simulation software, considering wall surface reactions, turbulent flow, and chemical reaction. Parameters such as activation energy and pre-exponential factor were provided by a study utilizing a nickel wire for NH3 decomposition experiments. The conversion of NH3 reached up to 94% via a nickel-based catalyst within a temperature range of 823 K to 923 K which is the exhaust gas temperature range. Various factors were considered to compare the efficiency of the system, including the mass flow of NH3, operating gauge pressure, mass flow of exhaust gas, among others. Result showed that pressure would not affect the conversion of NH3 at temperatures above 800 K, thus a lower amount of energy is required for a compression purpose in this approach. The conversion is maintained at 94% to 97% when lower activation energy is applied via a ruthenium-based catalyst. Overall, this study showed the feasibility of utilizing convective heat transfer from exhaust gas in hydrogen production by NH3 pyrolysis, and this will further enhance the development of NH3 as the potential H2 carrier for onsite production in hydrogen power generation.\",\"PeriodicalId\":14564,\"journal\":{\"name\":\"Inventions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inventions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/inventions9030056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inventions9030056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种解决方案,以解决使用氢气(H2)作为能源所面临的存储和运输成本高的挑战。它建议利用氨(NH3)作为氢载体,在现场为氢燃气轮机生产氢气。与液态氢相比,NH3 具有更高的氢气体积密度,可将运输成本降低 40%。该工艺涉及 NH3 高温分解,利用燃气轮机产生的废气余热生产 H2 和氮气 (N2)。为了设计和了解热回收 NH3 分解系统的性能,我们进行了数值模拟。设计考虑因素包括传热单元数量和热交换器效率的概念,使热回收系统的效率高达 91%。使用 ANSYS(一种商业模拟软件)对 NH3 分解进行了模拟,考虑了壁面反应、湍流和化学反应。活化能和预指数等参数由利用镍丝进行 NH3 分解实验的研究提供。在 823 K 至 923 K(废气温度范围)的温度范围内,镍基催化剂的 NH3 转化率高达 94%。比较系统效率时考虑了多种因素,包括 NH3 的质量流量、工作表压、废气质量流量等。结果表明,在温度高于 800 K 时,压力不会影响 NH3 的转化,因此这种方法所需的压缩能量较低。当通过钌基催化剂应用较低的活化能时,转化率可保持在 94% 至 97%。总之,这项研究表明了利用废气对流换热通过 NH3 高温分解制氢的可行性,这将进一步促进 NH3 作为潜在的氢载体在氢发电现场生产中的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Simulation of Effective Heat Recapture Ammonia Pyrolysis System for Hydrogen Energy
This paper proposes a solution to address the challenges of high storage and transport costs associated with using hydrogen (H2) as an energy source. It suggests utilizing ammonia (NH3) as a hydrogen carrier to produce H2 onsite for hydrogen gas turbines. NH3 offers higher volumetric hydrogen density compared to liquid H2, potentially reducing shipping costs by 40%. The process involves NH3 pyrolysis, which utilizes the heat waste from exhaust gas generated by gas turbines to produce H2 and nitrogen (N2). Numerical simulations were conducted to design and understand the behaviour of the heat recapture NH3 decomposition system. The design considerations included the concept of the number of transfer units and heat exchanger efficiency, achieving a heat recapture system efficiency of up to 91%. The simulation of NH3 decomposition was performed using ANSYS, a commercial simulation software, considering wall surface reactions, turbulent flow, and chemical reaction. Parameters such as activation energy and pre-exponential factor were provided by a study utilizing a nickel wire for NH3 decomposition experiments. The conversion of NH3 reached up to 94% via a nickel-based catalyst within a temperature range of 823 K to 923 K which is the exhaust gas temperature range. Various factors were considered to compare the efficiency of the system, including the mass flow of NH3, operating gauge pressure, mass flow of exhaust gas, among others. Result showed that pressure would not affect the conversion of NH3 at temperatures above 800 K, thus a lower amount of energy is required for a compression purpose in this approach. The conversion is maintained at 94% to 97% when lower activation energy is applied via a ruthenium-based catalyst. Overall, this study showed the feasibility of utilizing convective heat transfer from exhaust gas in hydrogen production by NH3 pyrolysis, and this will further enhance the development of NH3 as the potential H2 carrier for onsite production in hydrogen power generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inventions
Inventions Engineering-Engineering (all)
CiteScore
4.80
自引率
11.80%
发文量
91
审稿时长
12 weeks
期刊最新文献
PI3SO: A Spectroscopic γ-Ray Scanner Table for Sort and Segregate Radwaste Analysis Aircraft Innovation Trends Enabling Advanced Air Mobility The Effect of Individual Hydrocarbons in the Composition of Diesel Fuel on the Effectiveness of Depressant Additives A Review of Available Solutions for Implementation of Small–Medium Combined Heat and Power (CHP) Systems Real-Time Precision in 3D Concrete Printing: Controlling Layer Morphology via Machine Vision and Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1