基于区域匹配的自适应参数局部一致性自动离群点去除算法

Tao Huang, Hongbo Pan, Nanxi Zhou
{"title":"基于区域匹配的自适应参数局部一致性自动离群点去除算法","authors":"Tao Huang, Hongbo Pan, Nanxi Zhou","doi":"10.5194/isprs-annals-x-1-2024-99-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Due to the influence of image differences and matching methods, geometric calibration of remote sensing images often results in the extraction of control points with inevitable outliers. Moreover, it is susceptible to limitations imposed by locally constrained outlier rejection methods, making it challenging to automatically remove relatively small gross errors. This paper introduces an adaptive parameter local consistency automatic outlier removal algorithm, referred to as APLC. Initially, we construct k-nearest neighbors for each pair of matching points, deriving distance and topological uncertainty based on the accuracy of point matching. Subsequently, we conduct cross-validation on the uncertainty between the two pairs of vectors formed by points within the neighborhood, aiming for parameter adaptation. Finally, a cost-defined function is introduced to assess the consistency of local structures. Through a two-stage outlier removal strategy, matching points that do not maintain local structural consistency are eliminated. To assess the effectiveness of the proposed algorithm, we conduct experimental comparisons using region-based initial matching results from the FY-3D remote sensing dataset, demonstrating its superiority compared to three state-of-the-art methods.\n","PeriodicalId":508124,"journal":{"name":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":" 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive parameter local consistency automatic outlier removal algorithm for area-based matching\",\"authors\":\"Tao Huang, Hongbo Pan, Nanxi Zhou\",\"doi\":\"10.5194/isprs-annals-x-1-2024-99-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Due to the influence of image differences and matching methods, geometric calibration of remote sensing images often results in the extraction of control points with inevitable outliers. Moreover, it is susceptible to limitations imposed by locally constrained outlier rejection methods, making it challenging to automatically remove relatively small gross errors. This paper introduces an adaptive parameter local consistency automatic outlier removal algorithm, referred to as APLC. Initially, we construct k-nearest neighbors for each pair of matching points, deriving distance and topological uncertainty based on the accuracy of point matching. Subsequently, we conduct cross-validation on the uncertainty between the two pairs of vectors formed by points within the neighborhood, aiming for parameter adaptation. Finally, a cost-defined function is introduced to assess the consistency of local structures. Through a two-stage outlier removal strategy, matching points that do not maintain local structural consistency are eliminated. To assess the effectiveness of the proposed algorithm, we conduct experimental comparisons using region-based initial matching results from the FY-3D remote sensing dataset, demonstrating its superiority compared to three state-of-the-art methods.\\n\",\"PeriodicalId\":508124,\"journal\":{\"name\":\"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\" 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-annals-x-1-2024-99-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-annals-x-1-2024-99-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要由于图像差异和匹配方法的影响,遥感图像的几何校准往往会导致控制点的提取不可避免地出现离群值。此外,它还容易受到局部约束离群值剔除方法的限制,使得自动剔除相对较小的粗大误差具有挑战性。本文介绍了一种自适应参数局部一致性自动离群点剔除算法,简称 APLC。首先,我们为每对匹配点构建 k 个近邻,根据点匹配的准确性推导出距离和拓扑不确定性。随后,我们对邻域内的点所形成的两对向量之间的不确定性进行交叉验证,以达到参数调整的目的。最后,我们引入了一个成本定义函数来评估局部结构的一致性。通过两阶段离群点去除策略,剔除不能保持局部结构一致性的匹配点。为了评估所提算法的有效性,我们使用 FY-3D 遥感数据集的基于区域的初始匹配结果进行了实验比较,结果表明该算法优于三种最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive parameter local consistency automatic outlier removal algorithm for area-based matching
Abstract. Due to the influence of image differences and matching methods, geometric calibration of remote sensing images often results in the extraction of control points with inevitable outliers. Moreover, it is susceptible to limitations imposed by locally constrained outlier rejection methods, making it challenging to automatically remove relatively small gross errors. This paper introduces an adaptive parameter local consistency automatic outlier removal algorithm, referred to as APLC. Initially, we construct k-nearest neighbors for each pair of matching points, deriving distance and topological uncertainty based on the accuracy of point matching. Subsequently, we conduct cross-validation on the uncertainty between the two pairs of vectors formed by points within the neighborhood, aiming for parameter adaptation. Finally, a cost-defined function is introduced to assess the consistency of local structures. Through a two-stage outlier removal strategy, matching points that do not maintain local structural consistency are eliminated. To assess the effectiveness of the proposed algorithm, we conduct experimental comparisons using region-based initial matching results from the FY-3D remote sensing dataset, demonstrating its superiority compared to three state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 19th 3D GeoInfo Conference: Preface Annals UAS Photogrammetry for Precise Digital Elevation Models of Complex Topography: A Strategy Guide Using Passive Multi-Modal Sensor Data for Thermal Simulation of Urban Surfaces Machine Learning Approaches for Vehicle Counting on Bridges Based on Global Ground-Based Radar Data Rectilinear Building Footprint Regularization Using Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1