Maria Frasca, Davide La Torre, Gabriella Pravettoni, Ilaria Cutica
{"title":"将卷积神经网络与长短期记忆层相结合,预测帕金森病的进展情况","authors":"Maria Frasca, Davide La Torre, Gabriella Pravettoni, Ilaria Cutica","doi":"10.1111/itor.13469","DOIUrl":null,"url":null,"abstract":"<p>Parkinson's disease (PD) is a neurological condition that occurs in nearly 1% of the world's population. The disease is manifested by a sharp drop in dopamine production, resulting from the death of the related producing cells in an area of the midbrain called the substantia nigra. Early diagnosis and accurate staging of the disease are essential to apply the appropriate therapeutic approaches to slow cognitive and motor decline. At present, there is not a singular blood test or biomarker accessible for diagnosing PD or monitoring the progression of its symptoms. Clinical professionals identify the disease by assessing the symptoms, which, however, may vary from case to case, as well as their progression speed. Magnetic resonance imaging (MRIs) have been used for the past three decades to diagnose and distinguish between PD and other neurological conditions.</p><p>However, to the best of our knowledge, no neural network models have been designed to identify the disease stage. This paper aims to fill this gap. Using the “Parkinson's Progression Markers Initiative” dataset, which reports the patient's MRI and an indication of the disease stage, we developed a model to identify the level of progression. The images and the associated scores were used for training and assessing different deep learning models. Our analysis distinguished four distinct disease progression levels based on a standard scale (Hoehn and Yah scale). The final architecture consists of the cascading of a 3D-CNN network, adopted to reduce and extract the spatial characteristics of the MRI for efficient training of the successive LSTM layers, aiming at modeling the temporal dependencies among the data. Before training the model, the patient's MRI is preprocessed to correct acquisition errors by applying image registration techniques, to extract irrelevant content from the image, such as nonbrain tissue (e.g., skull, neck, fat). We also adopted template-based data augmentation techniques to obtain a balanced dataset about progression classes. Our results show that the proposed 3D-CNN + LSTM model achieves state-of-the-art results by classifying the elements with 91.90 as macro averaged OVR AUC on four classes.</p>","PeriodicalId":49176,"journal":{"name":"International Transactions in Operational Research","volume":"32 4","pages":"2159-2188"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining convolution neural networks with long-short term memory layers to predict Parkinson's disease progression\",\"authors\":\"Maria Frasca, Davide La Torre, Gabriella Pravettoni, Ilaria Cutica\",\"doi\":\"10.1111/itor.13469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Parkinson's disease (PD) is a neurological condition that occurs in nearly 1% of the world's population. The disease is manifested by a sharp drop in dopamine production, resulting from the death of the related producing cells in an area of the midbrain called the substantia nigra. Early diagnosis and accurate staging of the disease are essential to apply the appropriate therapeutic approaches to slow cognitive and motor decline. At present, there is not a singular blood test or biomarker accessible for diagnosing PD or monitoring the progression of its symptoms. Clinical professionals identify the disease by assessing the symptoms, which, however, may vary from case to case, as well as their progression speed. Magnetic resonance imaging (MRIs) have been used for the past three decades to diagnose and distinguish between PD and other neurological conditions.</p><p>However, to the best of our knowledge, no neural network models have been designed to identify the disease stage. This paper aims to fill this gap. Using the “Parkinson's Progression Markers Initiative” dataset, which reports the patient's MRI and an indication of the disease stage, we developed a model to identify the level of progression. The images and the associated scores were used for training and assessing different deep learning models. Our analysis distinguished four distinct disease progression levels based on a standard scale (Hoehn and Yah scale). The final architecture consists of the cascading of a 3D-CNN network, adopted to reduce and extract the spatial characteristics of the MRI for efficient training of the successive LSTM layers, aiming at modeling the temporal dependencies among the data. Before training the model, the patient's MRI is preprocessed to correct acquisition errors by applying image registration techniques, to extract irrelevant content from the image, such as nonbrain tissue (e.g., skull, neck, fat). We also adopted template-based data augmentation techniques to obtain a balanced dataset about progression classes. Our results show that the proposed 3D-CNN + LSTM model achieves state-of-the-art results by classifying the elements with 91.90 as macro averaged OVR AUC on four classes.</p>\",\"PeriodicalId\":49176,\"journal\":{\"name\":\"International Transactions in Operational Research\",\"volume\":\"32 4\",\"pages\":\"2159-2188\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Transactions in Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/itor.13469\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions in Operational Research","FirstCategoryId":"91","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/itor.13469","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
Combining convolution neural networks with long-short term memory layers to predict Parkinson's disease progression
Parkinson's disease (PD) is a neurological condition that occurs in nearly 1% of the world's population. The disease is manifested by a sharp drop in dopamine production, resulting from the death of the related producing cells in an area of the midbrain called the substantia nigra. Early diagnosis and accurate staging of the disease are essential to apply the appropriate therapeutic approaches to slow cognitive and motor decline. At present, there is not a singular blood test or biomarker accessible for diagnosing PD or monitoring the progression of its symptoms. Clinical professionals identify the disease by assessing the symptoms, which, however, may vary from case to case, as well as their progression speed. Magnetic resonance imaging (MRIs) have been used for the past three decades to diagnose and distinguish between PD and other neurological conditions.
However, to the best of our knowledge, no neural network models have been designed to identify the disease stage. This paper aims to fill this gap. Using the “Parkinson's Progression Markers Initiative” dataset, which reports the patient's MRI and an indication of the disease stage, we developed a model to identify the level of progression. The images and the associated scores were used for training and assessing different deep learning models. Our analysis distinguished four distinct disease progression levels based on a standard scale (Hoehn and Yah scale). The final architecture consists of the cascading of a 3D-CNN network, adopted to reduce and extract the spatial characteristics of the MRI for efficient training of the successive LSTM layers, aiming at modeling the temporal dependencies among the data. Before training the model, the patient's MRI is preprocessed to correct acquisition errors by applying image registration techniques, to extract irrelevant content from the image, such as nonbrain tissue (e.g., skull, neck, fat). We also adopted template-based data augmentation techniques to obtain a balanced dataset about progression classes. Our results show that the proposed 3D-CNN + LSTM model achieves state-of-the-art results by classifying the elements with 91.90 as macro averaged OVR AUC on four classes.
期刊介绍:
International Transactions in Operational Research (ITOR) aims to advance the understanding and practice of Operational Research (OR) and Management Science internationally. Its scope includes:
International problems, such as those of fisheries management, environmental issues, and global competitiveness
International work done by major OR figures
Studies of worldwide interest from nations with emerging OR communities
National or regional OR work which has the potential for application in other nations
Technical developments of international interest
Specific organizational examples that can be applied in other countries
National and international presentations of transnational interest
Broadly relevant professional issues, such as those of ethics and practice
Applications relevant to global industries, such as operations management, manufacturing, and logistics.