基于电压误差估计的并网光伏发电系统三相 PWM 逆变器无过评故障诊断方法

Atallah Ouai, L. Mokrani, M. Machmoum, A. Houari
{"title":"基于电压误差估计的并网光伏发电系统三相 PWM 逆变器无过评故障诊断方法","authors":"Atallah Ouai, L. Mokrani, M. Machmoum, A. Houari","doi":"10.3311/ppee.23416","DOIUrl":null,"url":null,"abstract":"Inverter is an essential component of a grid connected PV system. In fact, an open-switch fault in this power converter could result an important system malfunction and consequently leads to system disconnection. In this context, this paper focuses on the fault-tolerant control of PWM-inverter with redundancy leg for grid-connected PV system. In addition, a fast method of fault detection and compensation is used to maintain the continuous operation of the converter when there is a half-leg open-circuit fault (IGBT+ anti-parallel diode) on one of PWM-inverter legs. Therefore, it can detect this type of fault and compensate it in less than 50 μs by using a time criterion instead of voltage criterion. Also, the fuzzy logic technique is employed to control the active and reactive power injected into the network without exceeding the whole system power capacity limits. Note that, in this study, the active and reactive power references of the chosen operating point (the reactive-to-active power ratio: tgφ = Q/P = 0.19) are based on experimental tests. Simulation results show the feasibility and the effectiveness of the proposed fault diagnosis method in terms of fault detection and service continuity in presence of a half-leg open-circuit fault in PWM-inverter without any over-rating of the PV system components or instability.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voltage Error Estimation-Based Fault Diagnosis Method for Three- phase PWM-inverter in Grid-connected Photovoltaic Power System Without any Over-rating\",\"authors\":\"Atallah Ouai, L. Mokrani, M. Machmoum, A. Houari\",\"doi\":\"10.3311/ppee.23416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inverter is an essential component of a grid connected PV system. In fact, an open-switch fault in this power converter could result an important system malfunction and consequently leads to system disconnection. In this context, this paper focuses on the fault-tolerant control of PWM-inverter with redundancy leg for grid-connected PV system. In addition, a fast method of fault detection and compensation is used to maintain the continuous operation of the converter when there is a half-leg open-circuit fault (IGBT+ anti-parallel diode) on one of PWM-inverter legs. Therefore, it can detect this type of fault and compensate it in less than 50 μs by using a time criterion instead of voltage criterion. Also, the fuzzy logic technique is employed to control the active and reactive power injected into the network without exceeding the whole system power capacity limits. Note that, in this study, the active and reactive power references of the chosen operating point (the reactive-to-active power ratio: tgφ = Q/P = 0.19) are based on experimental tests. Simulation results show the feasibility and the effectiveness of the proposed fault diagnosis method in terms of fault detection and service continuity in presence of a half-leg open-circuit fault in PWM-inverter without any over-rating of the PV system components or instability.\",\"PeriodicalId\":37664,\"journal\":{\"name\":\"Periodica polytechnica Electrical engineering and computer science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica polytechnica Electrical engineering and computer science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppee.23416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica polytechnica Electrical engineering and computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppee.23416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

逆变器是并网光伏系统的重要组成部分。事实上,如果该功率转换器出现开关断开故障,就会导致重要的系统故障,进而导致系统断电。在此背景下,本文重点研究了并网光伏系统中带有冗余支路的 PWM 逆变器的容错控制。此外,本文还采用了一种快速故障检测和补偿方法,以便在 PWM 逆变器的一条腿出现半腿开路故障(IGBT+ 反并联二极管)时,保持逆变器的连续运行。因此,它可以检测到这类故障,并通过使用时间准则而不是电压准则,在不到 50 μs 的时间内对其进行补偿。此外,还采用了模糊逻辑技术来控制注入电网的有功功率和无功功率,而不会超出整个系统的功率容量限制。需要注意的是,在本研究中,所选运行点的有功和无功功率参考值(无功功率与有功功率之比:tgφ = Q/P = 0.19)是根据实验测试得出的。仿真结果表明,在 PWM 逆变器出现半脚开路故障时,所提出的故障诊断方法在故障检测和服务连续性方面具有可行性和有效性,且不会导致光伏系统组件过载或不稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Voltage Error Estimation-Based Fault Diagnosis Method for Three- phase PWM-inverter in Grid-connected Photovoltaic Power System Without any Over-rating
Inverter is an essential component of a grid connected PV system. In fact, an open-switch fault in this power converter could result an important system malfunction and consequently leads to system disconnection. In this context, this paper focuses on the fault-tolerant control of PWM-inverter with redundancy leg for grid-connected PV system. In addition, a fast method of fault detection and compensation is used to maintain the continuous operation of the converter when there is a half-leg open-circuit fault (IGBT+ anti-parallel diode) on one of PWM-inverter legs. Therefore, it can detect this type of fault and compensate it in less than 50 μs by using a time criterion instead of voltage criterion. Also, the fuzzy logic technique is employed to control the active and reactive power injected into the network without exceeding the whole system power capacity limits. Note that, in this study, the active and reactive power references of the chosen operating point (the reactive-to-active power ratio: tgφ = Q/P = 0.19) are based on experimental tests. Simulation results show the feasibility and the effectiveness of the proposed fault diagnosis method in terms of fault detection and service continuity in presence of a half-leg open-circuit fault in PWM-inverter without any over-rating of the PV system components or instability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Periodica polytechnica Electrical engineering and computer science
Periodica polytechnica Electrical engineering and computer science Engineering-Electrical and Electronic Engineering
CiteScore
2.60
自引率
0.00%
发文量
36
期刊介绍: The main scope of the journal is to publish original research articles in the wide field of electrical engineering and informatics fitting into one of the following five Sections of the Journal: (i) Communication systems, networks and technology, (ii) Computer science and information theory, (iii) Control, signal processing and signal analysis, medical applications, (iv) Components, Microelectronics and Material Sciences, (v) Power engineering and mechatronics, (vi) Mobile Software, Internet of Things and Wearable Devices, (vii) Solid-state lighting and (viii) Vehicular Technology (land, airborne, and maritime mobile services; automotive, radar systems; antennas and radio wave propagation).
期刊最新文献
Modeling and Study of Different Magnet Topologies in Rotor of Low Rating IPMSMs Improving Reinforcement Learning Exploration by Autoencoders A Self-adapting Pixel Antenna - Substrate Lens System for Infrared Frequencies Palmprint Identification Using Dolphin Optimization Parasitic Loaded Shorting Pin Based Compact Multi-slot LoRa Antenna for Military Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1