基于文化遗产三维点云的东方建筑琉璃筒瓦结构分析

Ting On Chan, Yibo Ling, Yuli Wang, Kin Sum Li, Jing Shen
{"title":"基于文化遗产三维点云的东方建筑琉璃筒瓦结构分析","authors":"Ting On Chan, Yibo Ling, Yuli Wang, Kin Sum Li, Jing Shen","doi":"10.5194/isprs-annals-x-1-2024-19-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Laser scanning, along with its resultant 3D point clouds, constitutes a prevalent method for the documentation of cultural heritage. This paper introduces a novel workflow for the structural analysis of glazed tubular tiles that adorn the roofs of historical buildings in the Orient, utilizing 3D point clouds. The workflow integrates a robust segmentation algorithm utilizing the maximum principal curvature and normal vectors. Moreover, clustering algorithms, including DBSCAN, are incorporated to refine the clusters and thus increase segmentation accuracy. Structural analysis is enabled by cylindrical model fitting, which allows for the estimation of parameters and residuals. While the results exhibit commendable performance in individual tile segmentation, it is imperative to address the impact of substantial variations in scanning range and incident angles before engaging in the structural analysis fitting process. The results of experiment demonstrate that under conditions of significantly large scanning angles, the root mean square error (RMSE) for inadequately fitted tiles can extend to 0.066 m, surpassing twice the RMSE observed for well-fitted tiles. The proposed workflow proves to be applicable and exhibits significant potential to advance practices in cultural heritage documentation.\n","PeriodicalId":508124,"journal":{"name":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":" 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Analysis of Glazed Tubular Tiles of Oriental Architectures Based on 3D Point Clouds for Cultural Heritage\",\"authors\":\"Ting On Chan, Yibo Ling, Yuli Wang, Kin Sum Li, Jing Shen\",\"doi\":\"10.5194/isprs-annals-x-1-2024-19-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Laser scanning, along with its resultant 3D point clouds, constitutes a prevalent method for the documentation of cultural heritage. This paper introduces a novel workflow for the structural analysis of glazed tubular tiles that adorn the roofs of historical buildings in the Orient, utilizing 3D point clouds. The workflow integrates a robust segmentation algorithm utilizing the maximum principal curvature and normal vectors. Moreover, clustering algorithms, including DBSCAN, are incorporated to refine the clusters and thus increase segmentation accuracy. Structural analysis is enabled by cylindrical model fitting, which allows for the estimation of parameters and residuals. While the results exhibit commendable performance in individual tile segmentation, it is imperative to address the impact of substantial variations in scanning range and incident angles before engaging in the structural analysis fitting process. The results of experiment demonstrate that under conditions of significantly large scanning angles, the root mean square error (RMSE) for inadequately fitted tiles can extend to 0.066 m, surpassing twice the RMSE observed for well-fitted tiles. The proposed workflow proves to be applicable and exhibits significant potential to advance practices in cultural heritage documentation.\\n\",\"PeriodicalId\":508124,\"journal\":{\"name\":\"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\" 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-annals-x-1-2024-19-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-annals-x-1-2024-19-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要激光扫描及其产生的三维点云是记录文化遗产的常用方法。本文介绍了一种利用三维点云对装饰东方历史建筑屋顶的琉璃管状瓦片进行结构分析的新型工作流程。该工作流程集成了利用最大主曲率和法向量的稳健分割算法。此外,还采用了包括 DBSCAN 在内的聚类算法来完善聚类,从而提高分割精度。结构分析通过圆柱模型拟合得以实现,从而可以估计参数和残差。虽然实验结果表明单个瓦片分割的性能值得称赞,但在进行结构分析拟合之前,必须解决扫描范围和入射角度大幅变化的影响。实验结果表明,在扫描角度明显偏大的条件下,拟合不足的瓦片的均方根误差(RMSE)可达到 0.066 米,超过拟合良好的瓦片的均方根误差的两倍。事实证明,所提出的工作流程是适用的,并具有推动文化遗产文献工作的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural Analysis of Glazed Tubular Tiles of Oriental Architectures Based on 3D Point Clouds for Cultural Heritage
Abstract. Laser scanning, along with its resultant 3D point clouds, constitutes a prevalent method for the documentation of cultural heritage. This paper introduces a novel workflow for the structural analysis of glazed tubular tiles that adorn the roofs of historical buildings in the Orient, utilizing 3D point clouds. The workflow integrates a robust segmentation algorithm utilizing the maximum principal curvature and normal vectors. Moreover, clustering algorithms, including DBSCAN, are incorporated to refine the clusters and thus increase segmentation accuracy. Structural analysis is enabled by cylindrical model fitting, which allows for the estimation of parameters and residuals. While the results exhibit commendable performance in individual tile segmentation, it is imperative to address the impact of substantial variations in scanning range and incident angles before engaging in the structural analysis fitting process. The results of experiment demonstrate that under conditions of significantly large scanning angles, the root mean square error (RMSE) for inadequately fitted tiles can extend to 0.066 m, surpassing twice the RMSE observed for well-fitted tiles. The proposed workflow proves to be applicable and exhibits significant potential to advance practices in cultural heritage documentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 19th 3D GeoInfo Conference: Preface Annals UAS Photogrammetry for Precise Digital Elevation Models of Complex Topography: A Strategy Guide Using Passive Multi-Modal Sensor Data for Thermal Simulation of Urban Surfaces Machine Learning Approaches for Vehicle Counting on Bridges Based on Global Ground-Based Radar Data Rectilinear Building Footprint Regularization Using Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1