Wen Fan, Jiaojiao Tian, Jonas Troles, Martin Döllerer, Mengistie Kindu, T. Knoke
{"title":"比较深度学习和 MCWST 方法在单个树冠分割中的应用","authors":"Wen Fan, Jiaojiao Tian, Jonas Troles, Martin Döllerer, Mengistie Kindu, T. Knoke","doi":"10.5194/isprs-annals-x-1-2024-67-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Accurate segmentation of individual tree crowns (ITC) segmentation is essential for investigating tree-level based growth trends and assessing tree vitality. ITC segmentation using remote sensing data faces challenges due to crown heterogeneity, overlapping crowns and data quality. Currently, both classical and deep learning methods have been employed for crown detection and segmentation. However, the effectiveness of deep learning based approaches is limited by the need for high-quality annotated datasets. Benefiting from the BaKIM project, a high-quality annotated dataset can be provided and tested with a Mask Region-based Convolutional Neural Network (Mask R-CNN). In addition, we have used the deep learning based approach to detect the tree locations thus refining the previous Marker controlled Watershed Transformation (MCWST) segmentation approach. The experimental results show that the Mask R-CNN model exhibits better model performance and less time cost compared to the MCWST algorithm for ITC segmentation. In summary, the proposed framework can achieve robust and fast ITC segmentation, which has the potential to support various forest applications such as tree vitality estimation.\n","PeriodicalId":508124,"journal":{"name":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":" 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing Deep Learning and MCWST Approaches for Individual Tree Crown Segmentation\",\"authors\":\"Wen Fan, Jiaojiao Tian, Jonas Troles, Martin Döllerer, Mengistie Kindu, T. Knoke\",\"doi\":\"10.5194/isprs-annals-x-1-2024-67-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Accurate segmentation of individual tree crowns (ITC) segmentation is essential for investigating tree-level based growth trends and assessing tree vitality. ITC segmentation using remote sensing data faces challenges due to crown heterogeneity, overlapping crowns and data quality. Currently, both classical and deep learning methods have been employed for crown detection and segmentation. However, the effectiveness of deep learning based approaches is limited by the need for high-quality annotated datasets. Benefiting from the BaKIM project, a high-quality annotated dataset can be provided and tested with a Mask Region-based Convolutional Neural Network (Mask R-CNN). In addition, we have used the deep learning based approach to detect the tree locations thus refining the previous Marker controlled Watershed Transformation (MCWST) segmentation approach. The experimental results show that the Mask R-CNN model exhibits better model performance and less time cost compared to the MCWST algorithm for ITC segmentation. In summary, the proposed framework can achieve robust and fast ITC segmentation, which has the potential to support various forest applications such as tree vitality estimation.\\n\",\"PeriodicalId\":508124,\"journal\":{\"name\":\"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\" 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-annals-x-1-2024-67-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-annals-x-1-2024-67-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparing Deep Learning and MCWST Approaches for Individual Tree Crown Segmentation
Abstract. Accurate segmentation of individual tree crowns (ITC) segmentation is essential for investigating tree-level based growth trends and assessing tree vitality. ITC segmentation using remote sensing data faces challenges due to crown heterogeneity, overlapping crowns and data quality. Currently, both classical and deep learning methods have been employed for crown detection and segmentation. However, the effectiveness of deep learning based approaches is limited by the need for high-quality annotated datasets. Benefiting from the BaKIM project, a high-quality annotated dataset can be provided and tested with a Mask Region-based Convolutional Neural Network (Mask R-CNN). In addition, we have used the deep learning based approach to detect the tree locations thus refining the previous Marker controlled Watershed Transformation (MCWST) segmentation approach. The experimental results show that the Mask R-CNN model exhibits better model performance and less time cost compared to the MCWST algorithm for ITC segmentation. In summary, the proposed framework can achieve robust and fast ITC segmentation, which has the potential to support various forest applications such as tree vitality estimation.