利用活性过硫酸盐与羰基化活性炭支撑的纳米级零价铁修复受多环芳烃污染的土壤

Catalysts Pub Date : 2024-05-08 DOI:10.3390/catal14050311
Changzhao Chen, Zhe Yuan, Shenshen Sun, Jiacai Xie, Kunfeng Zhang, Yuanzheng Zhai, Rui Zuo, Erping Bi, Yufang Tao, Quanwei Song
{"title":"利用活性过硫酸盐与羰基化活性炭支撑的纳米级零价铁修复受多环芳烃污染的土壤","authors":"Changzhao Chen, Zhe Yuan, Shenshen Sun, Jiacai Xie, Kunfeng Zhang, Yuanzheng Zhai, Rui Zuo, Erping Bi, Yufang Tao, Quanwei Song","doi":"10.3390/catal14050311","DOIUrl":null,"url":null,"abstract":"Soil contamination by polycyclic aromatic hydrocarbons (PAHs) has been an environmental issue worldwide, which aggravates the ecological risks faced by animals, plants, and humans. In this work, the composites of nanoscale zero-valent iron supported on carbonylated activated carbon (nZVI-CAC) were prepared and applied to activate persulfate (PS) for the degradation of PAHs in contaminated soil. The prepared nZVI-CAC catalyst was characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It was found that the PS/nZVI-CAC system was superior for phenanthrene (PHE) oxidation than other processes using different oxidants (PS/nZVI-CAC > PMS/nZVI-CAC > H2O2/nZVI-CAC) and it was also efficient for the degradation of other six PAHs with different structures and molar weights. Under optimal conditions, the lowest and highest degradation efficiencies for the selected PAHs were 60.8% and 90.7%, respectively. Active SO4−• and HO• were found to be generated on the surface of the catalysts, and SO4−• was dominant for PHE oxidation through quenching experiments. The results demonstrated that the heterogeneous process using activated PS with nZVI-CAC was effective for PAH degradation, which could provide a theoretical basis for the remediation of PAH-polluted soil.","PeriodicalId":505577,"journal":{"name":"Catalysts","volume":" 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remediation of Polycyclic Aromatic Hydrocarbon-Contaminated Soil by Using Activated Persulfate with Carbonylated Activated Carbon Supported Nanoscale Zero-Valent Iron\",\"authors\":\"Changzhao Chen, Zhe Yuan, Shenshen Sun, Jiacai Xie, Kunfeng Zhang, Yuanzheng Zhai, Rui Zuo, Erping Bi, Yufang Tao, Quanwei Song\",\"doi\":\"10.3390/catal14050311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil contamination by polycyclic aromatic hydrocarbons (PAHs) has been an environmental issue worldwide, which aggravates the ecological risks faced by animals, plants, and humans. In this work, the composites of nanoscale zero-valent iron supported on carbonylated activated carbon (nZVI-CAC) were prepared and applied to activate persulfate (PS) for the degradation of PAHs in contaminated soil. The prepared nZVI-CAC catalyst was characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It was found that the PS/nZVI-CAC system was superior for phenanthrene (PHE) oxidation than other processes using different oxidants (PS/nZVI-CAC > PMS/nZVI-CAC > H2O2/nZVI-CAC) and it was also efficient for the degradation of other six PAHs with different structures and molar weights. Under optimal conditions, the lowest and highest degradation efficiencies for the selected PAHs were 60.8% and 90.7%, respectively. Active SO4−• and HO• were found to be generated on the surface of the catalysts, and SO4−• was dominant for PHE oxidation through quenching experiments. The results demonstrated that the heterogeneous process using activated PS with nZVI-CAC was effective for PAH degradation, which could provide a theoretical basis for the remediation of PAH-polluted soil.\",\"PeriodicalId\":505577,\"journal\":{\"name\":\"Catalysts\",\"volume\":\" 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/catal14050311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/catal14050311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多环芳烃(PAHs)对土壤的污染一直是世界性的环境问题,它加剧了动物、植物和人类面临的生态风险。本研究制备了纳米级零价铁与羰基化活性炭(nZVI-CAC)的复合材料,并将其用于活化过硫酸盐(PS),以降解污染土壤中的多环芳烃。通过扫描电子显微镜(SEM)、X 射线衍射仪(XRD)、傅立叶变换红外光谱(FTIR)和 X 射线光电子能谱(XPS)对制备的 nZVI-CAC 催化剂进行了表征。研究发现,PS/nZVI-CAC 系统对菲(PHE)的氧化效果优于使用不同氧化剂的其他工艺(PS/nZVI-CAC > PMS/nZVI-CAC > H2O2/nZVI-CAC),而且该系统还能有效降解其他六种具有不同结构和摩尔重量的多环芳烃。在最佳条件下,对所选 PAHs 的最低和最高降解效率分别为 60.8% 和 90.7%。通过淬灭实验发现,催化剂表面生成了活性 SO4-和 HO-,其中 SO4-在 PHE 氧化中占主导地位。结果表明,使用活性 PS 与 nZVI-CAC 的异构过程能有效降解多环芳烃,为多环芳烃污染土壤的修复提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Remediation of Polycyclic Aromatic Hydrocarbon-Contaminated Soil by Using Activated Persulfate with Carbonylated Activated Carbon Supported Nanoscale Zero-Valent Iron
Soil contamination by polycyclic aromatic hydrocarbons (PAHs) has been an environmental issue worldwide, which aggravates the ecological risks faced by animals, plants, and humans. In this work, the composites of nanoscale zero-valent iron supported on carbonylated activated carbon (nZVI-CAC) were prepared and applied to activate persulfate (PS) for the degradation of PAHs in contaminated soil. The prepared nZVI-CAC catalyst was characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It was found that the PS/nZVI-CAC system was superior for phenanthrene (PHE) oxidation than other processes using different oxidants (PS/nZVI-CAC > PMS/nZVI-CAC > H2O2/nZVI-CAC) and it was also efficient for the degradation of other six PAHs with different structures and molar weights. Under optimal conditions, the lowest and highest degradation efficiencies for the selected PAHs were 60.8% and 90.7%, respectively. Active SO4−• and HO• were found to be generated on the surface of the catalysts, and SO4−• was dominant for PHE oxidation through quenching experiments. The results demonstrated that the heterogeneous process using activated PS with nZVI-CAC was effective for PAH degradation, which could provide a theoretical basis for the remediation of PAH-polluted soil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Facile Immersing Synthesis of Pt Single Atoms Supported on Sulfide for Bifunctional toward Seawater Electrolysis Construction of Cu2O-ZnO/Cellulose Composites for Enhancing the Photocatalytic Performance The Hydrodeoxygenation of Phenol over Ni-P/Hβ and Ni-P/Ce-β: Modifying the Effects in Dispersity and Acidity BiVO4-Based Photocatalysts for the Degradation of Antibiotics in Wastewater: Calcination Role after Solvothermal Synthesis Green Synthesis of Copper Oxide Nanoparticles from Waste Solar Panels Using Piper nigrum Fruit Extract and Their Antibacterial Activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1