Zhipeng Li, Hui Chen, Zhongqing Chen, Lihe Xie, D. Pan
{"title":"生物信息学分析揭示了胃腺癌中巨噬细胞标记基因特征的预后意义","authors":"Zhipeng Li, Hui Chen, Zhongqing Chen, Lihe Xie, D. Pan","doi":"10.31083/j.fbl2905172","DOIUrl":null,"url":null,"abstract":"Background: Gastric adenocarcinoma (GAC) is a malignant tumor with the highest incidence in the digestive system. Macrophages have been proven to play important roles in tumor microenvironment. Methods: Herein, single-cell RNA sequencing (scRNA-seq) profiles from the Gene Expression Omnibus (GEO) and bulk RNA-seq data from the Cancer Genome Atlas (TCGA) database were utilized to construct a macrophage marker gene signature (MMGS) to predict the prognosis of GAC patients. Subsequently, a risk score model based on the MMGS was built to predict the prognosis of GAC patients; further, this was validated in the GEO cohort. The risk score categorized patients into the high-and low-risk groups. A nomogram model based on the risk score and clinic-pathological characteristics was developed. Results: Seven genes, ABCA1 , CTHRC1 , GADD45B , NPC2 , PLTP , PRSS23 , and RNASE1 , were included in the risk score model. Patients with a low-risk score showed a better prognosis. The MMGS had good sensitivity and specificity for predicting the prognosis inGAC patients. The risk score was an independent prognostic factor. The constructed nomogram exhibited favorable predictability and reliability for predicting GAC prognosis. Conclusion: In conclusion, the risk score model based on the seven MMGSs performed well in the predicting prognosis of GAC patients. Our study may provide new insights into clinical decision-making for the personalized treatment of patients with gastric cancer (GC).","PeriodicalId":503756,"journal":{"name":"Frontiers in Bioscience-Landmark","volume":"58 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinformatics Analysis Reveals Prognostic Significance of the Macrophage Marker Gene Signature in Gastric Adenocarcinoma\",\"authors\":\"Zhipeng Li, Hui Chen, Zhongqing Chen, Lihe Xie, D. Pan\",\"doi\":\"10.31083/j.fbl2905172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Gastric adenocarcinoma (GAC) is a malignant tumor with the highest incidence in the digestive system. Macrophages have been proven to play important roles in tumor microenvironment. Methods: Herein, single-cell RNA sequencing (scRNA-seq) profiles from the Gene Expression Omnibus (GEO) and bulk RNA-seq data from the Cancer Genome Atlas (TCGA) database were utilized to construct a macrophage marker gene signature (MMGS) to predict the prognosis of GAC patients. Subsequently, a risk score model based on the MMGS was built to predict the prognosis of GAC patients; further, this was validated in the GEO cohort. The risk score categorized patients into the high-and low-risk groups. A nomogram model based on the risk score and clinic-pathological characteristics was developed. Results: Seven genes, ABCA1 , CTHRC1 , GADD45B , NPC2 , PLTP , PRSS23 , and RNASE1 , were included in the risk score model. Patients with a low-risk score showed a better prognosis. The MMGS had good sensitivity and specificity for predicting the prognosis inGAC patients. The risk score was an independent prognostic factor. The constructed nomogram exhibited favorable predictability and reliability for predicting GAC prognosis. Conclusion: In conclusion, the risk score model based on the seven MMGSs performed well in the predicting prognosis of GAC patients. Our study may provide new insights into clinical decision-making for the personalized treatment of patients with gastric cancer (GC).\",\"PeriodicalId\":503756,\"journal\":{\"name\":\"Frontiers in Bioscience-Landmark\",\"volume\":\"58 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioscience-Landmark\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31083/j.fbl2905172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioscience-Landmark","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/j.fbl2905172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bioinformatics Analysis Reveals Prognostic Significance of the Macrophage Marker Gene Signature in Gastric Adenocarcinoma
Background: Gastric adenocarcinoma (GAC) is a malignant tumor with the highest incidence in the digestive system. Macrophages have been proven to play important roles in tumor microenvironment. Methods: Herein, single-cell RNA sequencing (scRNA-seq) profiles from the Gene Expression Omnibus (GEO) and bulk RNA-seq data from the Cancer Genome Atlas (TCGA) database were utilized to construct a macrophage marker gene signature (MMGS) to predict the prognosis of GAC patients. Subsequently, a risk score model based on the MMGS was built to predict the prognosis of GAC patients; further, this was validated in the GEO cohort. The risk score categorized patients into the high-and low-risk groups. A nomogram model based on the risk score and clinic-pathological characteristics was developed. Results: Seven genes, ABCA1 , CTHRC1 , GADD45B , NPC2 , PLTP , PRSS23 , and RNASE1 , were included in the risk score model. Patients with a low-risk score showed a better prognosis. The MMGS had good sensitivity and specificity for predicting the prognosis inGAC patients. The risk score was an independent prognostic factor. The constructed nomogram exhibited favorable predictability and reliability for predicting GAC prognosis. Conclusion: In conclusion, the risk score model based on the seven MMGSs performed well in the predicting prognosis of GAC patients. Our study may provide new insights into clinical decision-making for the personalized treatment of patients with gastric cancer (GC).