非线性系统的梯度-后裔迭代学习控制算法

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Transactions of the Institute of Measurement and Control Pub Date : 2024-05-06 DOI:10.1177/01423312241247873
Zhi-ying He, Hongji Pu
{"title":"非线性系统的梯度-后裔迭代学习控制算法","authors":"Zhi-ying He, Hongji Pu","doi":"10.1177/01423312241247873","DOIUrl":null,"url":null,"abstract":"Original iterative learning control (OILC) has been proved a powerful tool in dealing with the model-free control problems by repetitively corrections based on the control error. However, the steady-state error under widely-used proportional-type original iterative learning control (P-type OILC) is highly corresponded to the proportional learning gain, making the algorithm parameter-determined. Therefore, a new gradient-descent iterative learning control (GDILC) algorithm is proposed to achieve a parameter-free approach by simulating the gradient-descent process. First, GDILC problem is formulated mathematically. Next, the idea of the algorithm is proposed, the analyses of the convergence and the steady-state error are conducted and the algorithm is implemented. GDILC will generate a random correction with a gradient-descent upper bound, rather than a correction proportional to the error in P-type OILC. Finally, illustrative and application simulations are conducted to validate the algorithm. Results show that the algorithm will be convergent after adequate iterations under proper corrections. The steady-state error will be less affected by the algorithm parameters under GDILC than that under OILC.","PeriodicalId":49426,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A gradient-descent iterative learning control algorithm for a non-linear system\",\"authors\":\"Zhi-ying He, Hongji Pu\",\"doi\":\"10.1177/01423312241247873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Original iterative learning control (OILC) has been proved a powerful tool in dealing with the model-free control problems by repetitively corrections based on the control error. However, the steady-state error under widely-used proportional-type original iterative learning control (P-type OILC) is highly corresponded to the proportional learning gain, making the algorithm parameter-determined. Therefore, a new gradient-descent iterative learning control (GDILC) algorithm is proposed to achieve a parameter-free approach by simulating the gradient-descent process. First, GDILC problem is formulated mathematically. Next, the idea of the algorithm is proposed, the analyses of the convergence and the steady-state error are conducted and the algorithm is implemented. GDILC will generate a random correction with a gradient-descent upper bound, rather than a correction proportional to the error in P-type OILC. Finally, illustrative and application simulations are conducted to validate the algorithm. Results show that the algorithm will be convergent after adequate iterations under proper corrections. The steady-state error will be less affected by the algorithm parameters under GDILC than that under OILC.\",\"PeriodicalId\":49426,\"journal\":{\"name\":\"Transactions of the Institute of Measurement and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Institute of Measurement and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/01423312241247873\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/01423312241247873","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

原始迭代学习控制(OILC)基于控制误差进行重复修正,已被证明是处理无模型控制问题的有力工具。然而,在广泛使用的比例型原始迭代学习控制(P 型 OILC)下,稳态误差与比例学习增益高度对应,使得算法参数化。因此,本文提出了一种新的梯度下降迭代学习控制(GDILC)算法,通过模拟梯度下降过程实现无参数控制。首先,对 GDILC 问题进行了数学表述。接着,提出了算法的思想,对收敛性和稳态误差进行了分析,并实现了算法。GDILC 将生成具有梯度下降上限的随机修正,而不是 P 型 OILC 中与误差成比例的修正。最后,我们进行了示例和应用模拟,以验证该算法。结果表明,在适当的修正条件下,算法经过充分的迭代后会收敛。与 OILC 算法相比,GDILC 算法的稳态误差受算法参数的影响较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A gradient-descent iterative learning control algorithm for a non-linear system
Original iterative learning control (OILC) has been proved a powerful tool in dealing with the model-free control problems by repetitively corrections based on the control error. However, the steady-state error under widely-used proportional-type original iterative learning control (P-type OILC) is highly corresponded to the proportional learning gain, making the algorithm parameter-determined. Therefore, a new gradient-descent iterative learning control (GDILC) algorithm is proposed to achieve a parameter-free approach by simulating the gradient-descent process. First, GDILC problem is formulated mathematically. Next, the idea of the algorithm is proposed, the analyses of the convergence and the steady-state error are conducted and the algorithm is implemented. GDILC will generate a random correction with a gradient-descent upper bound, rather than a correction proportional to the error in P-type OILC. Finally, illustrative and application simulations are conducted to validate the algorithm. Results show that the algorithm will be convergent after adequate iterations under proper corrections. The steady-state error will be less affected by the algorithm parameters under GDILC than that under OILC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
16.70%
发文量
203
审稿时长
3.4 months
期刊介绍: Transactions of the Institute of Measurement and Control is a fully peer-reviewed international journal. The journal covers all areas of applications in instrumentation and control. Its scope encompasses cutting-edge research and development, education and industrial applications.
期刊最新文献
Selective feature block and joint IoU loss for object detection A speed coordination control method based on D-S evidence synthesis theory Model Predictive Control based on Long-Term Memory neural network model inversion Improved GNN based on Graph-Transformer: A new framework for rolling mill bearing fault diagnosis Auxiliary variable-based output feedback control for hydraulic servo systems with desired compensation approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1