Rik Vaerenberg, Douw Marx, Seyed Ali Hosseinli, Fabrizio De Fabritiis, Hao Wen, Rui Zhu, Konstantinos C. Gryllias
{"title":"在未知运行条件和故障严重程度下预测齿轮箱点蚀严重程度的预处理和建模方法","authors":"Rik Vaerenberg, Douw Marx, Seyed Ali Hosseinli, Fabrizio De Fabritiis, Hao Wen, Rui Zhu, Konstantinos C. Gryllias","doi":"10.36001/ijphm.2024.v15i1.3808","DOIUrl":null,"url":null,"abstract":"Gear pitting is a common gearbox failure mode that can lead to unplanned machine downtime, inefficient power transmission and a higher risk of sudden catastrophic failure. Consequently, there is strong incentive to create machine learning models that are capable of detecting and quantifying the severity of gearbox pitting faults. The performance of machine learning models is however highly dependent on the availability of training data and since training data for a wide variety of different operating conditions and fault severities is rarely available in practice, machine learning models must be designed to be robust to unseen operating conditions and fault severities. Furthermore, models should be capable of identifying data outside of the training data distribution and adjusting the confidence in a prediction accordingly. This work presents a strategy for pitting severity estimation in gearboxes under unseen operating conditions and fault severities in response to the PHM North America 2023 Conference Data Challenge. The strategy includes the design of dedicated validation sets for quantifying model performance on unseen data, an investigation into the most appropriate preprocessing methods, and a specialized convolutional neural network with an integrated out of distribution detection model for identifying samples from foreign operating conditions and fault severities. The results show that the best models are capable of some generalization to unseen operating conditions, but the generalization to unseen pitting severities is more challenging.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preprocessing and Modeling Approach for Gearbox Pitting Severity Prediction under Unseen Operating Conditions and Fault Severities\",\"authors\":\"Rik Vaerenberg, Douw Marx, Seyed Ali Hosseinli, Fabrizio De Fabritiis, Hao Wen, Rui Zhu, Konstantinos C. Gryllias\",\"doi\":\"10.36001/ijphm.2024.v15i1.3808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gear pitting is a common gearbox failure mode that can lead to unplanned machine downtime, inefficient power transmission and a higher risk of sudden catastrophic failure. Consequently, there is strong incentive to create machine learning models that are capable of detecting and quantifying the severity of gearbox pitting faults. The performance of machine learning models is however highly dependent on the availability of training data and since training data for a wide variety of different operating conditions and fault severities is rarely available in practice, machine learning models must be designed to be robust to unseen operating conditions and fault severities. Furthermore, models should be capable of identifying data outside of the training data distribution and adjusting the confidence in a prediction accordingly. This work presents a strategy for pitting severity estimation in gearboxes under unseen operating conditions and fault severities in response to the PHM North America 2023 Conference Data Challenge. The strategy includes the design of dedicated validation sets for quantifying model performance on unseen data, an investigation into the most appropriate preprocessing methods, and a specialized convolutional neural network with an integrated out of distribution detection model for identifying samples from foreign operating conditions and fault severities. The results show that the best models are capable of some generalization to unseen operating conditions, but the generalization to unseen pitting severities is more challenging.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/ijphm.2024.v15i1.3808\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2024.v15i1.3808","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Preprocessing and Modeling Approach for Gearbox Pitting Severity Prediction under Unseen Operating Conditions and Fault Severities
Gear pitting is a common gearbox failure mode that can lead to unplanned machine downtime, inefficient power transmission and a higher risk of sudden catastrophic failure. Consequently, there is strong incentive to create machine learning models that are capable of detecting and quantifying the severity of gearbox pitting faults. The performance of machine learning models is however highly dependent on the availability of training data and since training data for a wide variety of different operating conditions and fault severities is rarely available in practice, machine learning models must be designed to be robust to unseen operating conditions and fault severities. Furthermore, models should be capable of identifying data outside of the training data distribution and adjusting the confidence in a prediction accordingly. This work presents a strategy for pitting severity estimation in gearboxes under unseen operating conditions and fault severities in response to the PHM North America 2023 Conference Data Challenge. The strategy includes the design of dedicated validation sets for quantifying model performance on unseen data, an investigation into the most appropriate preprocessing methods, and a specialized convolutional neural network with an integrated out of distribution detection model for identifying samples from foreign operating conditions and fault severities. The results show that the best models are capable of some generalization to unseen operating conditions, but the generalization to unseen pitting severities is more challenging.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.