加速大型微结构线性路径函数计算的简化并发内存访问方法

IF 17.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-05-04 DOI:10.21914/anziamj.v64.17973
Edward Bissaker, B. Lamichhane, David Jenkins
{"title":"加速大型微结构线性路径函数计算的简化并发内存访问方法","authors":"Edward Bissaker, B. Lamichhane, David Jenkins","doi":"10.21914/anziamj.v64.17973","DOIUrl":null,"url":null,"abstract":"The Concurrent Reduced Memory Access method (CRMA) is a scalable memory-efficient Monte Carlo method for computing the lineal path function. It addresses an inherent memory bottleneck of lineal path function algorithms by utilising known properties of the two-point correlation function to reduce the number of voxels where the phase value must be evaluated. The CRMA method reduces the computation time and improves the scalability characteristics of the traditional lineal path function Monte Carlo methods. CRMA also provides additional information useful for analysing microstructures since the two-point correlation function is computed as part of the method. The CRMA method offers an efficient, scalable and extendable solution for computing the lineal path function.\nReferences\n\nA. A. Agra, A. Nicolodi, B. D. Flores, I. V. Flores, G. L. R. da Silva, A. C. F. Vilela, and E. Osório. Automated procedure for coke microstructural characterization in imagej software aiming industrial application. Fuel 304, 121374 (2021). doi: 10.1016/j.fuel.2021.121374\nJ. Baruchel, P. Bleuet, A. Bravin, P. Coan, E. Lima, A. Madsen, W. Ludwig, P. Pernot, and J. Susini. Advances in synchrotron hard X-ray based imaging. Comptes Rendus Physique 9.5-6 (2008), pp. 624–641. doi: 10.1016/j.crhy.2007.08.003\nJ. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Sys. J. 4.1 (1965), pp. 25–30. doi: 10.1147/sj.41.0025\nD. T. Fullwood, S. R. Kalidindi, S. R. Niezgoda, A. Fast, and N. Hampson. Gradient-based microstructure reconstructions from distributions using fast Fourier transforms. Mat. Sci. Eng.: A 494.1-2 (2008), pp. 68–72. doi: 10.1016/j.msea.2007.10.087\nJ. Gajdošík, J. Zeman, and M. Šejnoha. Qualitative analysis of fiber composite microstructure: Influence of boundary conditions. Prob. Eng. Mech. 21.4 (2006), pp. 317–329. doi: 10.1016/j.probengmech.2005.11.006\nE. Y. Guo, N. Chawla, T. Jing, S. Torquato, and Y. Jiao. Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation-erosion method. Mat. Character. 89 (2014), pp. 33–42. doi: 10.1016/j.matchar.2013.12.011\nJ. Havelka, A. Kučerová, and J. Sýkora. Compression and reconstruction of random microstructures using accelerated lineal path function. Comput. Mat. Sci. 122 (2016), pp. 102–117. doi: 10.1016/j.commatsci.2016.04.044\nJ. H. Kinney and M. C. Nichols. X-ray tomographic microscopy (XTM) using synchrotron radiation. Ann. Rev. Mat. Sci. 22.1 (1992), pp. 121–152. doi: 10.1146/annurev.ms.22.080192.001005\nD. Kirk and W.-m. W. Hwu. Programming massively parallel processors: A hands-on approach. Morgan Kaufmann, 2016. url: https://shop.elsevier.com/books/programming-massively-parallel-processors/kirk/978-0-12-811986-0\nJ. Kováčik. Correlation between Young’s modulus and porosity in porous materials. J. Matt. Sci. Lett. 18.13 (1999), pp. 1007–1010. doi: 10.1023/A:1006669914946\nJ. Kukunas. Power and performance: Software analysis and optimization. Morgan Kaufmann, 2015. url: https://www.sciencedirect.com/book/9780128007266/power-and-performance\nD. S. Li, M. A. Tschopp, M. Khaleel, and X. Sun. Comparison of reconstructed spatial microstructure images using different statistical descriptors. Comput. Mat. Sci. 51.1 (2012), pp. 437–444. doi: 10.1016/j.commatsci.2011.07.056\nH. Lomas, D. R. Jenkins, M. R. Mahoney, R. Pearce, R. Roest, K. Steel, and S. Mayo. Examining mechanisms of metallurgical coke fracture using micro-CT imaging and analysis. Fuel Process. Tech. 155 (2017), pp. 183–190. doi: 10.1016/j.fuproc.2016.05.039\nB. Lu and S. Torquato. Lineal-path function for random heterogeneous materials. Phys. Rev. A 45.2 (1992), pp. 922–929. doi: 10.1103/PhysRevA.45.922\nN. Otsu. A threshold selection method from gray-level histograms. IEEE Trans. Sys., Man. Cyber. 9.1 (1979), pp. 62–66. doi: 10.1109/TSMC.1979.4310076\nH. Singh, A. M. Gokhale, S. I. Lieberman, and S. Tamirisakandala. Image based computations of lineal path probability distributions for microstructure representation. Mat. Sci. Eng.: A 474.1-2 (2008), pp. 104–111. doi: 10.1016/j.msea.2007.03.099\nM. S. Talukdar, O. Torsaeter, and M. A. Ioannidis. Stochastic reconstruction of particulate media from two-dimensional images. J. Colloid Interface Sci. 248.2 (2002), pp. 419–428. doi: 10.1006/jcis.2001.8064\nS. Torquato. Microstructure characterization and bulk properties of disordered two-phase media. J. Stat. Phys. 45.5 (1986), pp. 843–873. doi: 10.1007/BF01020577\nD. M. Turner, S. R. Niezgoda, and S. R. Kalidindi. Efficient computation of the angularly resolved chord length distributions and lineal path functions in large microstructure datasets. Mod. Sim. Mat. Sci. Eng. 24.7, 075002 (2016). doi: 10.1088/0965-0393/24/7/075002\nC. L. Y. Yeong and S. Torquato. Reconstructing random media. Phys. Rev. E 57.1 (1998), pp. 495–506. doi: 10.1103/PhysRevE.57.495\nJ. Zeman. Analysis of composite materials with random microstructure. Czech Technical University, Faculty of Civil Engineering, 2003. url: https://katalog.cbvk.cz/arl-cbvk/en/detail-cbvk_us_cat-0288377-Analysis-of-composite-materials-with-random- microstructure/\n","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"65 3","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A reduced concurrent memory access method to accelerate the computation of the lineal path function on large microstructures\",\"authors\":\"Edward Bissaker, B. Lamichhane, David Jenkins\",\"doi\":\"10.21914/anziamj.v64.17973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Concurrent Reduced Memory Access method (CRMA) is a scalable memory-efficient Monte Carlo method for computing the lineal path function. It addresses an inherent memory bottleneck of lineal path function algorithms by utilising known properties of the two-point correlation function to reduce the number of voxels where the phase value must be evaluated. The CRMA method reduces the computation time and improves the scalability characteristics of the traditional lineal path function Monte Carlo methods. CRMA also provides additional information useful for analysing microstructures since the two-point correlation function is computed as part of the method. The CRMA method offers an efficient, scalable and extendable solution for computing the lineal path function.\\nReferences\\n\\nA. A. Agra, A. Nicolodi, B. D. Flores, I. V. Flores, G. L. R. da Silva, A. C. F. Vilela, and E. Osório. Automated procedure for coke microstructural characterization in imagej software aiming industrial application. Fuel 304, 121374 (2021). doi: 10.1016/j.fuel.2021.121374\\nJ. Baruchel, P. Bleuet, A. Bravin, P. Coan, E. Lima, A. Madsen, W. Ludwig, P. Pernot, and J. Susini. Advances in synchrotron hard X-ray based imaging. Comptes Rendus Physique 9.5-6 (2008), pp. 624–641. doi: 10.1016/j.crhy.2007.08.003\\nJ. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Sys. J. 4.1 (1965), pp. 25–30. doi: 10.1147/sj.41.0025\\nD. T. Fullwood, S. R. Kalidindi, S. R. Niezgoda, A. Fast, and N. Hampson. Gradient-based microstructure reconstructions from distributions using fast Fourier transforms. Mat. Sci. Eng.: A 494.1-2 (2008), pp. 68–72. doi: 10.1016/j.msea.2007.10.087\\nJ. Gajdošík, J. Zeman, and M. Šejnoha. Qualitative analysis of fiber composite microstructure: Influence of boundary conditions. Prob. Eng. Mech. 21.4 (2006), pp. 317–329. doi: 10.1016/j.probengmech.2005.11.006\\nE. Y. Guo, N. Chawla, T. Jing, S. Torquato, and Y. Jiao. Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation-erosion method. Mat. Character. 89 (2014), pp. 33–42. doi: 10.1016/j.matchar.2013.12.011\\nJ. Havelka, A. Kučerová, and J. Sýkora. Compression and reconstruction of random microstructures using accelerated lineal path function. Comput. Mat. Sci. 122 (2016), pp. 102–117. doi: 10.1016/j.commatsci.2016.04.044\\nJ. H. Kinney and M. C. Nichols. X-ray tomographic microscopy (XTM) using synchrotron radiation. Ann. Rev. Mat. Sci. 22.1 (1992), pp. 121–152. doi: 10.1146/annurev.ms.22.080192.001005\\nD. Kirk and W.-m. W. Hwu. Programming massively parallel processors: A hands-on approach. Morgan Kaufmann, 2016. url: https://shop.elsevier.com/books/programming-massively-parallel-processors/kirk/978-0-12-811986-0\\nJ. Kováčik. Correlation between Young’s modulus and porosity in porous materials. J. Matt. Sci. Lett. 18.13 (1999), pp. 1007–1010. doi: 10.1023/A:1006669914946\\nJ. Kukunas. Power and performance: Software analysis and optimization. Morgan Kaufmann, 2015. url: https://www.sciencedirect.com/book/9780128007266/power-and-performance\\nD. S. Li, M. A. Tschopp, M. Khaleel, and X. Sun. Comparison of reconstructed spatial microstructure images using different statistical descriptors. Comput. Mat. Sci. 51.1 (2012), pp. 437–444. doi: 10.1016/j.commatsci.2011.07.056\\nH. Lomas, D. R. Jenkins, M. R. Mahoney, R. Pearce, R. Roest, K. Steel, and S. Mayo. Examining mechanisms of metallurgical coke fracture using micro-CT imaging and analysis. Fuel Process. Tech. 155 (2017), pp. 183–190. doi: 10.1016/j.fuproc.2016.05.039\\nB. Lu and S. Torquato. Lineal-path function for random heterogeneous materials. Phys. Rev. A 45.2 (1992), pp. 922–929. doi: 10.1103/PhysRevA.45.922\\nN. Otsu. A threshold selection method from gray-level histograms. IEEE Trans. Sys., Man. Cyber. 9.1 (1979), pp. 62–66. doi: 10.1109/TSMC.1979.4310076\\nH. Singh, A. M. Gokhale, S. I. Lieberman, and S. Tamirisakandala. Image based computations of lineal path probability distributions for microstructure representation. Mat. Sci. Eng.: A 474.1-2 (2008), pp. 104–111. doi: 10.1016/j.msea.2007.03.099\\nM. S. Talukdar, O. Torsaeter, and M. A. Ioannidis. Stochastic reconstruction of particulate media from two-dimensional images. J. Colloid Interface Sci. 248.2 (2002), pp. 419–428. doi: 10.1006/jcis.2001.8064\\nS. Torquato. Microstructure characterization and bulk properties of disordered two-phase media. J. Stat. Phys. 45.5 (1986), pp. 843–873. doi: 10.1007/BF01020577\\nD. M. Turner, S. R. Niezgoda, and S. R. Kalidindi. Efficient computation of the angularly resolved chord length distributions and lineal path functions in large microstructure datasets. Mod. Sim. Mat. Sci. Eng. 24.7, 075002 (2016). doi: 10.1088/0965-0393/24/7/075002\\nC. L. Y. Yeong and S. Torquato. Reconstructing random media. Phys. Rev. E 57.1 (1998), pp. 495–506. doi: 10.1103/PhysRevE.57.495\\nJ. Zeman. Analysis of composite materials with random microstructure. Czech Technical University, Faculty of Civil Engineering, 2003. url: https://katalog.cbvk.cz/arl-cbvk/en/detail-cbvk_us_cat-0288377-Analysis-of-composite-materials-with-random- microstructure/\\n\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"65 3\",\"pages\":\"\"},\"PeriodicalIF\":17.7000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21914/anziamj.v64.17973\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21914/anziamj.v64.17973","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

捷克技术大学土木工程学院,2003 年。网址:https://katalog.cbvk.cz/arl-cbvk/en/detail-cbvk_us_cat-0288377-Analysis-of-composite-materials-with-random- microstructure/
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A reduced concurrent memory access method to accelerate the computation of the lineal path function on large microstructures
The Concurrent Reduced Memory Access method (CRMA) is a scalable memory-efficient Monte Carlo method for computing the lineal path function. It addresses an inherent memory bottleneck of lineal path function algorithms by utilising known properties of the two-point correlation function to reduce the number of voxels where the phase value must be evaluated. The CRMA method reduces the computation time and improves the scalability characteristics of the traditional lineal path function Monte Carlo methods. CRMA also provides additional information useful for analysing microstructures since the two-point correlation function is computed as part of the method. The CRMA method offers an efficient, scalable and extendable solution for computing the lineal path function. References A. A. Agra, A. Nicolodi, B. D. Flores, I. V. Flores, G. L. R. da Silva, A. C. F. Vilela, and E. Osório. Automated procedure for coke microstructural characterization in imagej software aiming industrial application. Fuel 304, 121374 (2021). doi: 10.1016/j.fuel.2021.121374 J. Baruchel, P. Bleuet, A. Bravin, P. Coan, E. Lima, A. Madsen, W. Ludwig, P. Pernot, and J. Susini. Advances in synchrotron hard X-ray based imaging. Comptes Rendus Physique 9.5-6 (2008), pp. 624–641. doi: 10.1016/j.crhy.2007.08.003 J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Sys. J. 4.1 (1965), pp. 25–30. doi: 10.1147/sj.41.0025 D. T. Fullwood, S. R. Kalidindi, S. R. Niezgoda, A. Fast, and N. Hampson. Gradient-based microstructure reconstructions from distributions using fast Fourier transforms. Mat. Sci. Eng.: A 494.1-2 (2008), pp. 68–72. doi: 10.1016/j.msea.2007.10.087 J. Gajdošík, J. Zeman, and M. Šejnoha. Qualitative analysis of fiber composite microstructure: Influence of boundary conditions. Prob. Eng. Mech. 21.4 (2006), pp. 317–329. doi: 10.1016/j.probengmech.2005.11.006 E. Y. Guo, N. Chawla, T. Jing, S. Torquato, and Y. Jiao. Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation-erosion method. Mat. Character. 89 (2014), pp. 33–42. doi: 10.1016/j.matchar.2013.12.011 J. Havelka, A. Kučerová, and J. Sýkora. Compression and reconstruction of random microstructures using accelerated lineal path function. Comput. Mat. Sci. 122 (2016), pp. 102–117. doi: 10.1016/j.commatsci.2016.04.044 J. H. Kinney and M. C. Nichols. X-ray tomographic microscopy (XTM) using synchrotron radiation. Ann. Rev. Mat. Sci. 22.1 (1992), pp. 121–152. doi: 10.1146/annurev.ms.22.080192.001005 D. Kirk and W.-m. W. Hwu. Programming massively parallel processors: A hands-on approach. Morgan Kaufmann, 2016. url: https://shop.elsevier.com/books/programming-massively-parallel-processors/kirk/978-0-12-811986-0 J. Kováčik. Correlation between Young’s modulus and porosity in porous materials. J. Matt. Sci. Lett. 18.13 (1999), pp. 1007–1010. doi: 10.1023/A:1006669914946 J. Kukunas. Power and performance: Software analysis and optimization. Morgan Kaufmann, 2015. url: https://www.sciencedirect.com/book/9780128007266/power-and-performance D. S. Li, M. A. Tschopp, M. Khaleel, and X. Sun. Comparison of reconstructed spatial microstructure images using different statistical descriptors. Comput. Mat. Sci. 51.1 (2012), pp. 437–444. doi: 10.1016/j.commatsci.2011.07.056 H. Lomas, D. R. Jenkins, M. R. Mahoney, R. Pearce, R. Roest, K. Steel, and S. Mayo. Examining mechanisms of metallurgical coke fracture using micro-CT imaging and analysis. Fuel Process. Tech. 155 (2017), pp. 183–190. doi: 10.1016/j.fuproc.2016.05.039 B. Lu and S. Torquato. Lineal-path function for random heterogeneous materials. Phys. Rev. A 45.2 (1992), pp. 922–929. doi: 10.1103/PhysRevA.45.922 N. Otsu. A threshold selection method from gray-level histograms. IEEE Trans. Sys., Man. Cyber. 9.1 (1979), pp. 62–66. doi: 10.1109/TSMC.1979.4310076 H. Singh, A. M. Gokhale, S. I. Lieberman, and S. Tamirisakandala. Image based computations of lineal path probability distributions for microstructure representation. Mat. Sci. Eng.: A 474.1-2 (2008), pp. 104–111. doi: 10.1016/j.msea.2007.03.099 M. S. Talukdar, O. Torsaeter, and M. A. Ioannidis. Stochastic reconstruction of particulate media from two-dimensional images. J. Colloid Interface Sci. 248.2 (2002), pp. 419–428. doi: 10.1006/jcis.2001.8064 S. Torquato. Microstructure characterization and bulk properties of disordered two-phase media. J. Stat. Phys. 45.5 (1986), pp. 843–873. doi: 10.1007/BF01020577 D. M. Turner, S. R. Niezgoda, and S. R. Kalidindi. Efficient computation of the angularly resolved chord length distributions and lineal path functions in large microstructure datasets. Mod. Sim. Mat. Sci. Eng. 24.7, 075002 (2016). doi: 10.1088/0965-0393/24/7/075002 C. L. Y. Yeong and S. Torquato. Reconstructing random media. Phys. Rev. E 57.1 (1998), pp. 495–506. doi: 10.1103/PhysRevE.57.495 J. Zeman. Analysis of composite materials with random microstructure. Czech Technical University, Faculty of Civil Engineering, 2003. url: https://katalog.cbvk.cz/arl-cbvk/en/detail-cbvk_us_cat-0288377-Analysis-of-composite-materials-with-random- microstructure/
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Ordering Covalent–Organic Frameworks toward Next-Generation Nanofiltration Molecular-Level Decoding of Electron Transfer Dynamics in Metal Nanoclusters Ultraconformal Carbon-Based Biointerfacing Electrodes for Cognition Study. Theoretical Insights on the Regulatory Mechanisms of Structure and Doping on the Photoluminescence of Ligand Protected Gold Nanoclusters Aluminylenes: Synthesis, Reactivity, and Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1