利用增强型最小二乘支持向量机进行双重分解以预测水位

Vikneswari Someetheram, Muhammad Fadhil Marsani, Mohd Shareduwan Mohd Kasihmuddin, Siti Zulaikha Mohd Jamaludin, M. Mansor
{"title":"利用增强型最小二乘支持向量机进行双重分解以预测水位","authors":"Vikneswari Someetheram, Muhammad Fadhil Marsani, Mohd Shareduwan Mohd Kasihmuddin, Siti Zulaikha Mohd Jamaludin, M. Mansor","doi":"10.2166/wcc.2024.558","DOIUrl":null,"url":null,"abstract":"\n As global climates undergo changes, the frequency of water-related disasters rises, leading to significant economic losses and safety hazards. During flood events, river water levels exhibit unpredictable fluctuations, introducing considerable noise that poses challenges for accurate prediction. A prediction of water level by using existing water level data makes a major contribution to forecasting flood. Enhanced least-squares support vector machine (ELSSVM) is utilized by integrating an additional extra bias error control term. In this study, least-squares support vector machine (LSSVM) and ELSSVM optimized by the genetic algorithm (GA) were chosen to be compared with the help of data decomposition methods to improve daily water level prediction accuracy. Double empirical mode decomposition (DEMD) will be integrated with LSSVM and ELSSVM. Thus, the models are named LSSVM-GA, ELSSVM-GA, empirical mode decomposition (EMD)-LSSVM-GA, EMD-ELSSVM-GA, DEMD-LSSVM-GA, and DEMD-ELSSVM-GA. The proposed models are used in forecasting the water level of Klang River in Sri Muda, Malaysia. The behavior proposed models are investigated and compared based on several performance metrics such as root-mean-square error (RMSE) and squared correlation coefficient (R2). The results demonstrated that the DEMD-ELSSVM-GA model outperformed the other models based on the performance analysis in forecasting the water level with RMSE = 0.2536 m and R2 = 0.8596 for testing data that indicate the forecasting accuracy.","PeriodicalId":506949,"journal":{"name":"Journal of Water and Climate Change","volume":"3 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double decomposition with enhanced least-squares support vector machine to predict water level\",\"authors\":\"Vikneswari Someetheram, Muhammad Fadhil Marsani, Mohd Shareduwan Mohd Kasihmuddin, Siti Zulaikha Mohd Jamaludin, M. Mansor\",\"doi\":\"10.2166/wcc.2024.558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n As global climates undergo changes, the frequency of water-related disasters rises, leading to significant economic losses and safety hazards. During flood events, river water levels exhibit unpredictable fluctuations, introducing considerable noise that poses challenges for accurate prediction. A prediction of water level by using existing water level data makes a major contribution to forecasting flood. Enhanced least-squares support vector machine (ELSSVM) is utilized by integrating an additional extra bias error control term. In this study, least-squares support vector machine (LSSVM) and ELSSVM optimized by the genetic algorithm (GA) were chosen to be compared with the help of data decomposition methods to improve daily water level prediction accuracy. Double empirical mode decomposition (DEMD) will be integrated with LSSVM and ELSSVM. Thus, the models are named LSSVM-GA, ELSSVM-GA, empirical mode decomposition (EMD)-LSSVM-GA, EMD-ELSSVM-GA, DEMD-LSSVM-GA, and DEMD-ELSSVM-GA. The proposed models are used in forecasting the water level of Klang River in Sri Muda, Malaysia. The behavior proposed models are investigated and compared based on several performance metrics such as root-mean-square error (RMSE) and squared correlation coefficient (R2). The results demonstrated that the DEMD-ELSSVM-GA model outperformed the other models based on the performance analysis in forecasting the water level with RMSE = 0.2536 m and R2 = 0.8596 for testing data that indicate the forecasting accuracy.\",\"PeriodicalId\":506949,\"journal\":{\"name\":\"Journal of Water and Climate Change\",\"volume\":\"3 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Climate Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2024.558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wcc.2024.558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着全球气候的变化,与水有关的灾害的发生频率也在上升,造成了巨大的经济损失和安全隐患。在洪水泛滥时,河流水位会出现不可预测的波动,带来相当大的噪声,给准确预测带来挑战。利用现有水位数据进行水位预测对洪水预报有重大贡献。增强型最小二乘支持向量机(ELSSVM)是通过整合额外的偏差误差控制项来实现的。本研究选择了最小二乘支持向量机(LSSVM)和经遗传算法(GA)优化的 ELSSVM,借助数据分解方法进行比较,以提高日水位预测精度。双经验模式分解(DEMD)将与 LSSVM 和 ELSSVM 相结合。因此,这些模型被命名为 LSSVM-GA、ELSSVM-GA、经验模式分解(EMD)-LSSVM-GA、EMD-ELSSVM-GA、DEMD-LSSVM-GA 和 DEMD-ELSSVM-GA。所提议的模型被用于预测马来西亚斯里慕达巴生河的水位。根据均方根误差(RMSE)和平方相关系数(R2)等性能指标对所提出的模型进行了研究和比较。结果表明,根据性能分析,DEMD-ELSSVM-GA 模型在预测水位方面优于其他模型,其 RMSE = 0.2536 米,测试数据的 R2 = 0.8596,表明了预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Double decomposition with enhanced least-squares support vector machine to predict water level
As global climates undergo changes, the frequency of water-related disasters rises, leading to significant economic losses and safety hazards. During flood events, river water levels exhibit unpredictable fluctuations, introducing considerable noise that poses challenges for accurate prediction. A prediction of water level by using existing water level data makes a major contribution to forecasting flood. Enhanced least-squares support vector machine (ELSSVM) is utilized by integrating an additional extra bias error control term. In this study, least-squares support vector machine (LSSVM) and ELSSVM optimized by the genetic algorithm (GA) were chosen to be compared with the help of data decomposition methods to improve daily water level prediction accuracy. Double empirical mode decomposition (DEMD) will be integrated with LSSVM and ELSSVM. Thus, the models are named LSSVM-GA, ELSSVM-GA, empirical mode decomposition (EMD)-LSSVM-GA, EMD-ELSSVM-GA, DEMD-LSSVM-GA, and DEMD-ELSSVM-GA. The proposed models are used in forecasting the water level of Klang River in Sri Muda, Malaysia. The behavior proposed models are investigated and compared based on several performance metrics such as root-mean-square error (RMSE) and squared correlation coefficient (R2). The results demonstrated that the DEMD-ELSSVM-GA model outperformed the other models based on the performance analysis in forecasting the water level with RMSE = 0.2536 m and R2 = 0.8596 for testing data that indicate the forecasting accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bed shear stress distribution across a meander path Impact of El Niño, Indian Ocean dipole, and Madden–Julian oscillation on land surface temperature in Kuching City Sarawak, during the periods of 1997/1998 and 2015/2016: a pilot study Comprehensive economic losses assessment of storm surge disasters using open data: a case study of Zhoushan, China Determination of the effects of irrigation with recycled wastewater and biochar treatments on crop and soil properties in maize cultivation Determination of climate change impacts on Mediterranean streamflows: a case study of Edremit Eybek Creek, Türkiye
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1