高等教育中的创新财务管理:降低风险、提高质量的多尺度深度学习方法

Pub Date : 2024-05-04 DOI:10.52783/jes.3254
Hongbin Yue
{"title":"高等教育中的创新财务管理:降低风险、提高质量的多尺度深度学习方法","authors":"Hongbin Yue","doi":"10.52783/jes.3254","DOIUrl":null,"url":null,"abstract":"This paper presents a novel university financial management system leveraging multi-scale deep learning. With rising college enrollment and teaching complexities, traditional financial models require adaptation to mitigate risks and improve management quality. The system integrates hardware and software innovations: multiple sensors enhance data scanning, coordinated by a central coordinator, ensuring comprehensive financial database coverage. Software-wise, a structured database establishes attribute-based financial connections, crucial for weight assignment. Employing a multilayer perceptual network topology, a full interconnection model based on multi-scale deep learning facilitates profound data extraction. Experimental evaluations demonstrate the system's superior financial risk assessment capabilities compared to traditional approaches, extracting a broader spectrum of financial parameters for comprehensive risk warnings. By embracing multi-scale deep learning, this system promises significant advancements in university financial management, enhancing adaptability and risk mitigation in college finance departments.","PeriodicalId":0,"journal":{"name":"","volume":"18 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative Financial Management in Higher Education: A Multi-Scale Deep Learning Approach for Risk Reduction and Quality Enhancement\",\"authors\":\"Hongbin Yue\",\"doi\":\"10.52783/jes.3254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel university financial management system leveraging multi-scale deep learning. With rising college enrollment and teaching complexities, traditional financial models require adaptation to mitigate risks and improve management quality. The system integrates hardware and software innovations: multiple sensors enhance data scanning, coordinated by a central coordinator, ensuring comprehensive financial database coverage. Software-wise, a structured database establishes attribute-based financial connections, crucial for weight assignment. Employing a multilayer perceptual network topology, a full interconnection model based on multi-scale deep learning facilitates profound data extraction. Experimental evaluations demonstrate the system's superior financial risk assessment capabilities compared to traditional approaches, extracting a broader spectrum of financial parameters for comprehensive risk warnings. By embracing multi-scale deep learning, this system promises significant advancements in university financial management, enhancing adaptability and risk mitigation in college finance departments.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":\"18 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52783/jes.3254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/jes.3254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用多尺度深度学习的新型高校财务管理系统。随着高校招生人数的增加和教学工作的复杂化,传统的财务模式需要进行调整,以降低风险,提高管理质量。该系统集成了硬件和软件创新:多个传感器加强数据扫描,由中央协调器协调,确保财务数据库的全面覆盖。在软件方面,结构化数据库建立了基于属性的金融联系,这对权重分配至关重要。采用多层感知网络拓扑结构,基于多尺度深度学习的全互联模型有助于深度数据提取。实验评估表明,与传统方法相比,该系统具有更出色的金融风险评估能力,能提取更广泛的金融参数,以进行全面的风险预警。通过采用多尺度深度学习,该系统有望在高校财务管理方面取得重大进展,增强高校财务部门的适应性和风险缓解能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Innovative Financial Management in Higher Education: A Multi-Scale Deep Learning Approach for Risk Reduction and Quality Enhancement
This paper presents a novel university financial management system leveraging multi-scale deep learning. With rising college enrollment and teaching complexities, traditional financial models require adaptation to mitigate risks and improve management quality. The system integrates hardware and software innovations: multiple sensors enhance data scanning, coordinated by a central coordinator, ensuring comprehensive financial database coverage. Software-wise, a structured database establishes attribute-based financial connections, crucial for weight assignment. Employing a multilayer perceptual network topology, a full interconnection model based on multi-scale deep learning facilitates profound data extraction. Experimental evaluations demonstrate the system's superior financial risk assessment capabilities compared to traditional approaches, extracting a broader spectrum of financial parameters for comprehensive risk warnings. By embracing multi-scale deep learning, this system promises significant advancements in university financial management, enhancing adaptability and risk mitigation in college finance departments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1