用于太阳能发电和储能的石墨对电极改性 Tropaeolin-O 光敏化光电耦合电池

EcoEnergy Pub Date : 2024-05-03 DOI:10.1002/ece2.37
Pooran Koli, Rajendra Kumar, Yashodhara Dayma,  Dheerata, Meenakshi Jonwal
{"title":"用于太阳能发电和储能的石墨对电极改性 Tropaeolin-O 光敏化光电耦合电池","authors":"Pooran Koli,&nbsp;Rajendra Kumar,&nbsp;Yashodhara Dayma,&nbsp; Dheerata,&nbsp;Meenakshi Jonwal","doi":"10.1002/ece2.37","DOIUrl":null,"url":null,"abstract":"<p>An optimization, photo-stability, and hysteresis property of the Graphite counter electrode-modified Tropaeolin-O (TPO) photo-sensitized photogalvanic (PG) cells has been investigated. A complex H-shaped cell design, a costly and delicate saturated calomel electrode (counter electrode), and a heavy sensitizer molecule (dye having high molecular weight, low diffusivity, and low photo-stability) have been exploited for fabricating most of the PG cells so far. All these factors are not suitable for the fabrication of durable and cheap PG cells. Therefore, in the present study, the highly conductive/catalytically active robust graphite electrode with TPO dye photosensitizer (having a low molecular weight, higher diffusivity, and higher photo-stability) has been exploited with diffusion-friendly low cost and a simple transparent cylindrical glass tube. The cheap and robust graphite counter electrode has been exploited for optimization and long-term study of the TPO photo-sensitized PG cells. The observed electrical output is potential 676 mV, current 2000 µA, and power 340.0 μW. The power, current, and efficiency, have been found quite independent of the illumination window size. The potential and current have been observed to be quite stable over a long time during illumination, and the same has been supported by the hysteresis study.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"2 2","pages":"278-298"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.37","citationCount":"0","resultStr":"{\"title\":\"Graphite counter electrode modified Tropaeolin-O photo-sensitized photogalvanic cells for solar power and storage\",\"authors\":\"Pooran Koli,&nbsp;Rajendra Kumar,&nbsp;Yashodhara Dayma,&nbsp; Dheerata,&nbsp;Meenakshi Jonwal\",\"doi\":\"10.1002/ece2.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An optimization, photo-stability, and hysteresis property of the Graphite counter electrode-modified Tropaeolin-O (TPO) photo-sensitized photogalvanic (PG) cells has been investigated. A complex H-shaped cell design, a costly and delicate saturated calomel electrode (counter electrode), and a heavy sensitizer molecule (dye having high molecular weight, low diffusivity, and low photo-stability) have been exploited for fabricating most of the PG cells so far. All these factors are not suitable for the fabrication of durable and cheap PG cells. Therefore, in the present study, the highly conductive/catalytically active robust graphite electrode with TPO dye photosensitizer (having a low molecular weight, higher diffusivity, and higher photo-stability) has been exploited with diffusion-friendly low cost and a simple transparent cylindrical glass tube. The cheap and robust graphite counter electrode has been exploited for optimization and long-term study of the TPO photo-sensitized PG cells. The observed electrical output is potential 676 mV, current 2000 µA, and power 340.0 μW. The power, current, and efficiency, have been found quite independent of the illumination window size. The potential and current have been observed to be quite stable over a long time during illumination, and the same has been supported by the hysteresis study.</p>\",\"PeriodicalId\":100387,\"journal\":{\"name\":\"EcoEnergy\",\"volume\":\"2 2\",\"pages\":\"278-298\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.37\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoEnergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ece2.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoEnergy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece2.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究人员对石墨对电极改性的 Tropaeolin-O (TPO) 光敏化光电耦合(PG)电池的优化、光稳定性和滞后特性进行了研究。迄今为止,大多数光敏光栅电池都采用了复杂的 H 型电池设计、昂贵且易损的饱和甘汞电极(对电极)以及重敏化剂分子(高分子量、低扩散性和低光稳定性的染料)。所有这些因素都不适合制造耐用、廉价的光敏革电池。因此,在本研究中,利用高导电性/高催化活性的坚固石墨电极和 TPO 染料光敏剂(具有低分子量、高扩散性和高光稳定性),以低成本和简单的透明圆柱形玻璃管进行扩散。廉价而坚固的石墨对电极被用于 TPO 光敏 PG 电池的优化和长期研究。观察到的电输出为电位 676 mV、电流 2000 µA、功率 340.0 μW。研究发现,功率、电流和效率与照明窗口的大小完全无关。在长时间的照明过程中,电位和电流都非常稳定,这一点也得到了滞后研究的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graphite counter electrode modified Tropaeolin-O photo-sensitized photogalvanic cells for solar power and storage

An optimization, photo-stability, and hysteresis property of the Graphite counter electrode-modified Tropaeolin-O (TPO) photo-sensitized photogalvanic (PG) cells has been investigated. A complex H-shaped cell design, a costly and delicate saturated calomel electrode (counter electrode), and a heavy sensitizer molecule (dye having high molecular weight, low diffusivity, and low photo-stability) have been exploited for fabricating most of the PG cells so far. All these factors are not suitable for the fabrication of durable and cheap PG cells. Therefore, in the present study, the highly conductive/catalytically active robust graphite electrode with TPO dye photosensitizer (having a low molecular weight, higher diffusivity, and higher photo-stability) has been exploited with diffusion-friendly low cost and a simple transparent cylindrical glass tube. The cheap and robust graphite counter electrode has been exploited for optimization and long-term study of the TPO photo-sensitized PG cells. The observed electrical output is potential 676 mV, current 2000 µA, and power 340.0 μW. The power, current, and efficiency, have been found quite independent of the illumination window size. The potential and current have been observed to be quite stable over a long time during illumination, and the same has been supported by the hysteresis study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Modification engineering of “polymer-in-salt” electrolytes toward high-stability solid-state lithium batteries Copper nanoclusters derived from copper phthalocyanine as real active sites for CO2 electroreduction: Exploring size dependency on selectivity - A mini review Fabrication of self-supported catalysts via electrodeposition for proton exchange membrane water electrolysis: Emphasizing on the porous transport layers Electrode materials for calcium batteries: Future directions and perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1