F. Menhorn, Chris Hummel, Andreas Huber, Karlheinz Waibel, H. Bungartz, Peter Spitzenpfeil
{"title":"利用神经网络从回转滑雪的音频记录中自动识别门到门的时间","authors":"F. Menhorn, Chris Hummel, Andreas Huber, Karlheinz Waibel, H. Bungartz, Peter Spitzenpfeil","doi":"10.36950/2024.3ciss003","DOIUrl":null,"url":null,"abstract":"We introduce a novel approach for computing gate-to-gate time automatically from audio recordings. In slalom skiing, gate-to-gate timing is a valuable metric for athletes and trainers, capturing the time elapsed between slalom gates. The availability of these measurements immediately after each run allows for prompt feedback. This study specifically concentrates on gate-to-gate timing in alpine slalom skating, serving as a foundational step towards its future application in slalom skiing.\nWhile existing methods for measuring gate-to-gate time vary in their feasibility, accuracy, and compliance with regulations, we propose a solution utilizing a convolutional neural network (CNN) to predict gate locations using the audio signals generated upon gate contact. By leveraging these predictions, we achieve fully automated computation of gate-to-gate timings.\nWe conduct a comparative analysis between the CNN’s predictions and data obtained from an inertial measurement unit. Our findings reveal a strong predictive correlation between the two methods, with an R-squared value of 0.94 and a root mean squared error of 0.036. The majority of predictions demonstrate high accuracy, falling within a range of thousandths of a second. However, a few outliers negatively impact the overall performance. Notably, we observe no deterioration in predictive quality based on the distance between the camera and the gate.\nFinally, we delve into the challenges and limitations associated with our approach and provide a comprehensive discussion. To conclude, we outline potential avenues for future research and extensions of our methodology to the realm of slalom skiing.","PeriodicalId":508861,"journal":{"name":"Current Issues in Sport Science (CISS)","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic gate-to-gate time recognition from audio recordings in slalom skiing using neural networks\",\"authors\":\"F. Menhorn, Chris Hummel, Andreas Huber, Karlheinz Waibel, H. Bungartz, Peter Spitzenpfeil\",\"doi\":\"10.36950/2024.3ciss003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel approach for computing gate-to-gate time automatically from audio recordings. In slalom skiing, gate-to-gate timing is a valuable metric for athletes and trainers, capturing the time elapsed between slalom gates. The availability of these measurements immediately after each run allows for prompt feedback. This study specifically concentrates on gate-to-gate timing in alpine slalom skating, serving as a foundational step towards its future application in slalom skiing.\\nWhile existing methods for measuring gate-to-gate time vary in their feasibility, accuracy, and compliance with regulations, we propose a solution utilizing a convolutional neural network (CNN) to predict gate locations using the audio signals generated upon gate contact. By leveraging these predictions, we achieve fully automated computation of gate-to-gate timings.\\nWe conduct a comparative analysis between the CNN’s predictions and data obtained from an inertial measurement unit. Our findings reveal a strong predictive correlation between the two methods, with an R-squared value of 0.94 and a root mean squared error of 0.036. The majority of predictions demonstrate high accuracy, falling within a range of thousandths of a second. However, a few outliers negatively impact the overall performance. Notably, we observe no deterioration in predictive quality based on the distance between the camera and the gate.\\nFinally, we delve into the challenges and limitations associated with our approach and provide a comprehensive discussion. To conclude, we outline potential avenues for future research and extensions of our methodology to the realm of slalom skiing.\",\"PeriodicalId\":508861,\"journal\":{\"name\":\"Current Issues in Sport Science (CISS)\",\"volume\":\"2 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Issues in Sport Science (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36950/2024.3ciss003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Sport Science (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36950/2024.3ciss003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic gate-to-gate time recognition from audio recordings in slalom skiing using neural networks
We introduce a novel approach for computing gate-to-gate time automatically from audio recordings. In slalom skiing, gate-to-gate timing is a valuable metric for athletes and trainers, capturing the time elapsed between slalom gates. The availability of these measurements immediately after each run allows for prompt feedback. This study specifically concentrates on gate-to-gate timing in alpine slalom skating, serving as a foundational step towards its future application in slalom skiing.
While existing methods for measuring gate-to-gate time vary in their feasibility, accuracy, and compliance with regulations, we propose a solution utilizing a convolutional neural network (CNN) to predict gate locations using the audio signals generated upon gate contact. By leveraging these predictions, we achieve fully automated computation of gate-to-gate timings.
We conduct a comparative analysis between the CNN’s predictions and data obtained from an inertial measurement unit. Our findings reveal a strong predictive correlation between the two methods, with an R-squared value of 0.94 and a root mean squared error of 0.036. The majority of predictions demonstrate high accuracy, falling within a range of thousandths of a second. However, a few outliers negatively impact the overall performance. Notably, we observe no deterioration in predictive quality based on the distance between the camera and the gate.
Finally, we delve into the challenges and limitations associated with our approach and provide a comprehensive discussion. To conclude, we outline potential avenues for future research and extensions of our methodology to the realm of slalom skiing.