利用道路气象信息系统(RWIS)观测数据调查道路结冰形成机制

IF 3 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Climate Pub Date : 2024-05-02 DOI:10.3390/cli12050063
Menglin Jin, D. G. McBroom
{"title":"利用道路气象信息系统(RWIS)观测数据调查道路结冰形成机制","authors":"Menglin Jin, D. G. McBroom","doi":"10.3390/cli12050063","DOIUrl":null,"url":null,"abstract":"Ice formation on roads leads to a higher incidence of accidents and increases winter de-icing/anti-icing costs. This study analyzed 3 years (2019–2021) of Road Weather Information System (RWIS) sub-hourly measurements collected by the Montana Department of Transportation (MDT) to understand the first-order factors of road ice formation and its mechanisms. First, road ice is formed only when the road pavement surface temperature is equal to or below the freezing point (i.e., 32 °F (i.e., 0 °C)), while the corresponding 2 m air temperature could be above 32 °F. Nevertheless, when the road pavement was below 32 °F ice often did not form on the roads. Therefore, one challenge is to know under what conditions road ice forms. Second, the pavement surface temperature is critical for road ice formation. The clear road (i.e., with no ice or snow) surface pavement temperature is generally warmer than the air temperature during both day and night. This feature is different from a natural land surface, where the land skin temperature is lower than the air temperature on cloud-free nights due to radiative cooling. Third, subsurface temperature, measured using a RWIS subsurface sensor below a road surface, did not vary as much as the pavement temperature and, thus, may not be a good index for road ice formation. Fourth, urban heat island effects lead to black ice formation more frequently than roads located in other regions. Fifth, evaporative cooling from the water surface near a road segment further reduces the outlying air temperature, a mechanism that increases heat loss for bridges or lake-side roads in addition to radiative cooling. Additionally, mechanical lifting via mountains and hills is also an efficient mechanism that makes the air condense and, consequently, form ice on the roads. Forecasting road ice formation is in high demand for road safety. These observed features may help to develop a road ice physical model consisting of functions of hyper-local weather conditions, local domain knowledge, the road texture, and geographical environment.","PeriodicalId":37615,"journal":{"name":"Climate","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating Road Ice Formation Mechanisms Using Road Weather Information System (RWIS) Observations\",\"authors\":\"Menglin Jin, D. G. McBroom\",\"doi\":\"10.3390/cli12050063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ice formation on roads leads to a higher incidence of accidents and increases winter de-icing/anti-icing costs. This study analyzed 3 years (2019–2021) of Road Weather Information System (RWIS) sub-hourly measurements collected by the Montana Department of Transportation (MDT) to understand the first-order factors of road ice formation and its mechanisms. First, road ice is formed only when the road pavement surface temperature is equal to or below the freezing point (i.e., 32 °F (i.e., 0 °C)), while the corresponding 2 m air temperature could be above 32 °F. Nevertheless, when the road pavement was below 32 °F ice often did not form on the roads. Therefore, one challenge is to know under what conditions road ice forms. Second, the pavement surface temperature is critical for road ice formation. The clear road (i.e., with no ice or snow) surface pavement temperature is generally warmer than the air temperature during both day and night. This feature is different from a natural land surface, where the land skin temperature is lower than the air temperature on cloud-free nights due to radiative cooling. Third, subsurface temperature, measured using a RWIS subsurface sensor below a road surface, did not vary as much as the pavement temperature and, thus, may not be a good index for road ice formation. Fourth, urban heat island effects lead to black ice formation more frequently than roads located in other regions. Fifth, evaporative cooling from the water surface near a road segment further reduces the outlying air temperature, a mechanism that increases heat loss for bridges or lake-side roads in addition to radiative cooling. Additionally, mechanical lifting via mountains and hills is also an efficient mechanism that makes the air condense and, consequently, form ice on the roads. Forecasting road ice formation is in high demand for road safety. These observed features may help to develop a road ice physical model consisting of functions of hyper-local weather conditions, local domain knowledge, the road texture, and geographical environment.\",\"PeriodicalId\":37615,\"journal\":{\"name\":\"Climate\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cli12050063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cli12050063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

道路结冰会导致更高的事故发生率,并增加冬季除冰/防冰成本。本研究分析了蒙大拿州交通部(MDT)收集的 3 年(2019-2021 年)道路气象信息系统(RWIS)每小时的测量数据,以了解道路结冰形成的一阶因素及其机理。首先,只有当路面表面温度等于或低于冰点(即 32 °F(即 0 °C))时才会形成路面冰,而相应的 2 米空气温度可能高于 32 °F。然而,当路面温度低于 32 华氏度时,路面上往往不会结冰。因此,我们面临的一个挑战就是要知道道路结冰是在什么条件下形成的。其次,路面表面温度对路冰的形成至关重要。在白天和夜晚,清晰的路面(即没有冰雪的路面)表面温度通常高于空气温度。这一特点与自然地表不同,在自然地表,由于辐射冷却,无云夜晚的地表温度低于空气温度。第三,使用路面下的 RWIS 次表层传感器测量的次表层温度变化不如路面温度大,因此可能不是路面结冰的良好指标。第四,城市热岛效应导致黑冰形成的频率高于其他地区的道路。第五,路段附近水面的蒸发冷却会进一步降低外围空气温度,除了辐射冷却外,这种机制还会增加桥梁或湖边道路的热量损失。此外,通过山脉和丘陵的机械抬升也是一种有效机制,可使空气凝结,从而在道路上结冰。预测道路结冰对道路安全的要求很高。这些观测到的特征可能有助于开发一个由超本地天气条件、本地领域知识、道路纹理和地理环境函数组成的道路结冰物理模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating Road Ice Formation Mechanisms Using Road Weather Information System (RWIS) Observations
Ice formation on roads leads to a higher incidence of accidents and increases winter de-icing/anti-icing costs. This study analyzed 3 years (2019–2021) of Road Weather Information System (RWIS) sub-hourly measurements collected by the Montana Department of Transportation (MDT) to understand the first-order factors of road ice formation and its mechanisms. First, road ice is formed only when the road pavement surface temperature is equal to or below the freezing point (i.e., 32 °F (i.e., 0 °C)), while the corresponding 2 m air temperature could be above 32 °F. Nevertheless, when the road pavement was below 32 °F ice often did not form on the roads. Therefore, one challenge is to know under what conditions road ice forms. Second, the pavement surface temperature is critical for road ice formation. The clear road (i.e., with no ice or snow) surface pavement temperature is generally warmer than the air temperature during both day and night. This feature is different from a natural land surface, where the land skin temperature is lower than the air temperature on cloud-free nights due to radiative cooling. Third, subsurface temperature, measured using a RWIS subsurface sensor below a road surface, did not vary as much as the pavement temperature and, thus, may not be a good index for road ice formation. Fourth, urban heat island effects lead to black ice formation more frequently than roads located in other regions. Fifth, evaporative cooling from the water surface near a road segment further reduces the outlying air temperature, a mechanism that increases heat loss for bridges or lake-side roads in addition to radiative cooling. Additionally, mechanical lifting via mountains and hills is also an efficient mechanism that makes the air condense and, consequently, form ice on the roads. Forecasting road ice formation is in high demand for road safety. These observed features may help to develop a road ice physical model consisting of functions of hyper-local weather conditions, local domain knowledge, the road texture, and geographical environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Climate
Climate Earth and Planetary Sciences-Atmospheric Science
CiteScore
5.50
自引率
5.40%
发文量
172
审稿时长
11 weeks
期刊介绍: Climate is an independent, international and multi-disciplinary open access journal focusing on climate processes of the earth, covering all scales and involving modelling and observation methods. The scope of Climate includes: Global climate Regional climate Urban climate Multiscale climate Polar climate Tropical climate Climate downscaling Climate process and sensitivity studies Climate dynamics Climate variability (Interseasonal, interannual to decadal) Feedbacks between local, regional, and global climate change Anthropogenic climate change Climate and monsoon Cloud and precipitation predictions Past, present, and projected climate change Hydroclimate.
期刊最新文献
Spatial and Temporal Evolution of Seasonal Sea Ice Extent of Hudson Strait, Canada, 1971–2018 Auto-Machine-Learning Models for Standardized Precipitation Index Prediction in North–Central Mexico An Analysis of Romania’s Energy Strategy: Perspectives and Developments since 2020 Taking Stock of Recent Progress in Livelihood Vulnerability Assessments to Climate Change in the Developing World Simulating Climatic Patterns and Their Impacts on the Food Security Stability System in Jammu, Kashmir and Adjoining Regions, India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1