利用前沿深度学习技术检测大豆作物枯萎情况并进行分类

Myung Hwan Na, In Seop Na
{"title":"利用前沿深度学习技术检测大豆作物枯萎情况并进行分类","authors":"Myung Hwan Na, In Seop Na","doi":"10.18805/lrf-797","DOIUrl":null,"url":null,"abstract":"Background: This paper employs deep learning in the classification of soybean wilting, a plant health indicator affected by external pressures, using a Convolutional Neural Network (CNN) with a pre-trained model. It highlights the promise of deep learning in agriculture by examining the relevance of wilting, evolution in the agricultural sector and applications in crop wellness monitoring. Methods: A CNN is used in the study to classify soybean withering, with special attention to the VGG16 pre-trained model. Deep learning’s ability to interpret complex data patterns is harnessed for intelligent and accurate wilting detection. A smart detection system tailored for soybean wilting is developed, incorporating recent advancements and addressing associated challenges. Result: The CNN model, notably VGG16, achieves 76% overall accuracy in distinguishing healthy and wilted soybean leaves, signifying a transformative shift in soybean crop health management. The approach offers a precise, efficient and sustainable solution supported by state-of-the-art CNN technology, advancing soybean cultivation practices.\n","PeriodicalId":17998,"journal":{"name":"LEGUME RESEARCH - AN INTERNATIONAL JOURNAL","volume":"9 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection and Classification of Wilting in Soybean Crop using Cutting-edge Deep Learning Techniques\",\"authors\":\"Myung Hwan Na, In Seop Na\",\"doi\":\"10.18805/lrf-797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: This paper employs deep learning in the classification of soybean wilting, a plant health indicator affected by external pressures, using a Convolutional Neural Network (CNN) with a pre-trained model. It highlights the promise of deep learning in agriculture by examining the relevance of wilting, evolution in the agricultural sector and applications in crop wellness monitoring. Methods: A CNN is used in the study to classify soybean withering, with special attention to the VGG16 pre-trained model. Deep learning’s ability to interpret complex data patterns is harnessed for intelligent and accurate wilting detection. A smart detection system tailored for soybean wilting is developed, incorporating recent advancements and addressing associated challenges. Result: The CNN model, notably VGG16, achieves 76% overall accuracy in distinguishing healthy and wilted soybean leaves, signifying a transformative shift in soybean crop health management. The approach offers a precise, efficient and sustainable solution supported by state-of-the-art CNN technology, advancing soybean cultivation practices.\\n\",\"PeriodicalId\":17998,\"journal\":{\"name\":\"LEGUME RESEARCH - AN INTERNATIONAL JOURNAL\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LEGUME RESEARCH - AN INTERNATIONAL JOURNAL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18805/lrf-797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LEGUME RESEARCH - AN INTERNATIONAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18805/lrf-797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:大豆枯萎是一种受外部压力影响的植物健康指标,本文利用带有预训练模型的卷积神经网络(CNN),在大豆枯萎分类中采用了深度学习技术。通过研究大豆枯萎的相关性、农业部门的演变以及在作物健康监测中的应用,本文强调了深度学习在农业领域的应用前景。方法:研究中使用 CNN 对大豆枯萎进行分类,特别关注 VGG16 预训练模型。利用深度学习解释复杂数据模式的能力,实现智能、准确的枯萎检测。结合最新进展并应对相关挑战,开发了一个专为大豆枯萎定制的智能检测系统。结果:以 VGG16 为代表的 CNN 模型在区分大豆健康叶片和枯萎叶片方面的总体准确率达到 76%,标志着大豆作物健康管理发生了变革性转变。在最先进的 CNN 技术的支持下,该方法提供了一个精确、高效和可持续的解决方案,推动了大豆种植实践的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection and Classification of Wilting in Soybean Crop using Cutting-edge Deep Learning Techniques
Background: This paper employs deep learning in the classification of soybean wilting, a plant health indicator affected by external pressures, using a Convolutional Neural Network (CNN) with a pre-trained model. It highlights the promise of deep learning in agriculture by examining the relevance of wilting, evolution in the agricultural sector and applications in crop wellness monitoring. Methods: A CNN is used in the study to classify soybean withering, with special attention to the VGG16 pre-trained model. Deep learning’s ability to interpret complex data patterns is harnessed for intelligent and accurate wilting detection. A smart detection system tailored for soybean wilting is developed, incorporating recent advancements and addressing associated challenges. Result: The CNN model, notably VGG16, achieves 76% overall accuracy in distinguishing healthy and wilted soybean leaves, signifying a transformative shift in soybean crop health management. The approach offers a precise, efficient and sustainable solution supported by state-of-the-art CNN technology, advancing soybean cultivation practices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Management of Collar Rot Disease in Groundnut (Arachis hypogaea L.) Caused by Aspergillus niger in Rajasthan Through Bio-control Agents Exploring the Effective Management Strategy to Sustain Cowpea Production under High Temperature Stress Assessment of Genetic Stability in Chickpea Varieties Through GGE and AMMI Analyses Cluster Frontline Demonstration: An Effective Technology Dissemination Approach for Maximization of Productivity and Profitability of Chickpea (Cicer arietinum L.) Assessing the Effects of Chitosan on Groundnut (Arachis hypogaea L.) Growth and Productivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1