用于自监督单目深度估计的完整上下文信息提取

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computer Vision and Image Understanding Pub Date : 2024-05-15 DOI:10.1016/j.cviu.2024.104032
Dazheng Zhou , Mingliang Zhang , Xianjie Gao , Youmei Zhang , Bin Li
{"title":"用于自监督单目深度估计的完整上下文信息提取","authors":"Dazheng Zhou ,&nbsp;Mingliang Zhang ,&nbsp;Xianjie Gao ,&nbsp;Youmei Zhang ,&nbsp;Bin Li","doi":"10.1016/j.cviu.2024.104032","DOIUrl":null,"url":null,"abstract":"<div><p>Self-supervised learning methods are increasingly important for monocular depth estimation since they do not require ground-truth data during training. Although existing methods have achieved great success for better monocular depth estimation based on Convolutional Neural Networks (CNNs), the limited receptive field of CNNs usually is insufficient to effectively model the global information, e.g., relationship between foreground and background or relationship among objects, which are crucial for accurately capturing scene structure. Recently, some studies based on Transformers have attracted significant interest in computer vision. However, duo to the lack of spatial locality bias, they may fail to model the local information, e.g., fine-grained details with an image. To tackle these issues, we propose a novel self-supervised learning framework by incorporating the advantages of both the CNNs and Transformers so as to model the complete contextual information for high-quality monocular depth estimation. Specifically, the proposed method mainly includes two branches, where the Transformer branch is considered to capture the global information while the Convolution branch is exploited to preserve the local information. We also design a rectangle convolution module with pyramid structure to perceive the semi-global information, e.g. thin objects, along the horizontal and vertical directions within an image. Moreover, we propose a shape refinement module by learning the affinity matrix between pixel and its neighborhood to obtain accurate geometrical structure of scenes. Extensive experiments evaluated on KITTI, Cityscapes and Make3D dataset demonstrate that the proposed method achieves the competitive result compared with the state-of-the-art self-supervised monocular depth estimation methods and shows good cross-dataset generalization ability.</p></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete contextual information extraction for self-supervised monocular depth estimation\",\"authors\":\"Dazheng Zhou ,&nbsp;Mingliang Zhang ,&nbsp;Xianjie Gao ,&nbsp;Youmei Zhang ,&nbsp;Bin Li\",\"doi\":\"10.1016/j.cviu.2024.104032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Self-supervised learning methods are increasingly important for monocular depth estimation since they do not require ground-truth data during training. Although existing methods have achieved great success for better monocular depth estimation based on Convolutional Neural Networks (CNNs), the limited receptive field of CNNs usually is insufficient to effectively model the global information, e.g., relationship between foreground and background or relationship among objects, which are crucial for accurately capturing scene structure. Recently, some studies based on Transformers have attracted significant interest in computer vision. However, duo to the lack of spatial locality bias, they may fail to model the local information, e.g., fine-grained details with an image. To tackle these issues, we propose a novel self-supervised learning framework by incorporating the advantages of both the CNNs and Transformers so as to model the complete contextual information for high-quality monocular depth estimation. Specifically, the proposed method mainly includes two branches, where the Transformer branch is considered to capture the global information while the Convolution branch is exploited to preserve the local information. We also design a rectangle convolution module with pyramid structure to perceive the semi-global information, e.g. thin objects, along the horizontal and vertical directions within an image. Moreover, we propose a shape refinement module by learning the affinity matrix between pixel and its neighborhood to obtain accurate geometrical structure of scenes. Extensive experiments evaluated on KITTI, Cityscapes and Make3D dataset demonstrate that the proposed method achieves the competitive result compared with the state-of-the-art self-supervised monocular depth estimation methods and shows good cross-dataset generalization ability.</p></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077314224001139\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224001139","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

自我监督学习方法在单目深度估算中越来越重要,因为它们在训练过程中不需要地面实况数据。虽然现有的基于卷积神经网络(CNNs)的方法在更好地进行单目深度估计方面取得了巨大成功,但 CNNs 有限的感受野通常不足以有效地模拟全局信息,例如前景与背景之间的关系或物体之间的关系,而这些信息对于准确捕捉场景结构至关重要。最近,一些基于变形器的研究引起了计算机视觉领域的极大兴趣。然而,由于缺乏空间局部性偏差,它们可能无法对局部信息(如图像的细粒度细节)进行建模。为了解决这些问题,我们提出了一种新的自监督学习框架,它结合了 CNN 和变换器的优点,从而为高质量的单目深度估计建立完整的上下文信息模型。具体来说,所提出的方法主要包括两个分支,其中变换器分支用于捕捉全局信息,而卷积分支则用于保留局部信息。我们还设计了一个具有金字塔结构的矩形卷积模块,以感知图像中沿水平和垂直方向的半全局信息,例如细小物体。此外,我们还提出了一个形状细化模块,通过学习像素与其邻域之间的亲和矩阵来获得精确的场景几何结构。在 KITTI、Cityscapes 和 Make3D 数据集上进行的大量实验表明,与最先进的自监督单目深度估计方法相比,所提出的方法取得了具有竞争力的结果,并显示出良好的跨数据集泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Complete contextual information extraction for self-supervised monocular depth estimation

Self-supervised learning methods are increasingly important for monocular depth estimation since they do not require ground-truth data during training. Although existing methods have achieved great success for better monocular depth estimation based on Convolutional Neural Networks (CNNs), the limited receptive field of CNNs usually is insufficient to effectively model the global information, e.g., relationship between foreground and background or relationship among objects, which are crucial for accurately capturing scene structure. Recently, some studies based on Transformers have attracted significant interest in computer vision. However, duo to the lack of spatial locality bias, they may fail to model the local information, e.g., fine-grained details with an image. To tackle these issues, we propose a novel self-supervised learning framework by incorporating the advantages of both the CNNs and Transformers so as to model the complete contextual information for high-quality monocular depth estimation. Specifically, the proposed method mainly includes two branches, where the Transformer branch is considered to capture the global information while the Convolution branch is exploited to preserve the local information. We also design a rectangle convolution module with pyramid structure to perceive the semi-global information, e.g. thin objects, along the horizontal and vertical directions within an image. Moreover, we propose a shape refinement module by learning the affinity matrix between pixel and its neighborhood to obtain accurate geometrical structure of scenes. Extensive experiments evaluated on KITTI, Cityscapes and Make3D dataset demonstrate that the proposed method achieves the competitive result compared with the state-of-the-art self-supervised monocular depth estimation methods and shows good cross-dataset generalization ability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
期刊最新文献
Deformable surface reconstruction via Riemannian metric preservation Estimating optical flow: A comprehensive review of the state of the art A lightweight convolutional neural network-based feature extractor for visible images LightSOD: Towards lightweight and efficient network for salient object detection Triple-Stream Commonsense Circulation Transformer Network for Image Captioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1