在气候变化背景下利用人工神经网络和蒙特卡罗模拟研究未来海洋气候的新模式。

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Ocean Modelling Pub Date : 2024-05-17 DOI:10.1016/j.ocemod.2024.102384
Nerea Portillo Juan, Vicente Negro Valdecantos
{"title":"在气候变化背景下利用人工神经网络和蒙特卡罗模拟研究未来海洋气候的新模式。","authors":"Nerea Portillo Juan,&nbsp;Vicente Negro Valdecantos","doi":"10.1016/j.ocemod.2024.102384","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a new model to study future coastal maritime climate under climate change context. This new model combines statistical analysis, Monte Carlo simulations and Artificial Neural Networks (ANNs). Statistical analysis and Monte Carlo simulations are used to extrapolate future wave climate under climate change context at a regional level and ANNs are used to propagate these projected sea states obtained in deep water to the coast. The use of ANNs allows for the utilization of large amounts of data at a very low computational cost, and the use of Monte Carlo simulations enables the generation of future climate change projections at a regional level. The combination of the two methodologies results in a very accurate (MSE of 0.02 m and 1 s) and computationally inexpensive hybrid model that allows projections of coastal maritime climate considering climate change. This new methodology has been validated and applied in the Western Mediterranean for the long-term regime and for extreme events, obtaining increases in extreme events up to 1.5 m in wave height and up to 1.8 s in wave period by 2050.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"190 ","pages":"Article 102384"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1463500324000714/pdfft?md5=57413f642e0872fede7ee58226b42d66&pid=1-s2.0-S1463500324000714-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel model for the study of future maritime climate using artificial neural networks and Monte Carlo simulations under the context of climate change\",\"authors\":\"Nerea Portillo Juan,&nbsp;Vicente Negro Valdecantos\",\"doi\":\"10.1016/j.ocemod.2024.102384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a new model to study future coastal maritime climate under climate change context. This new model combines statistical analysis, Monte Carlo simulations and Artificial Neural Networks (ANNs). Statistical analysis and Monte Carlo simulations are used to extrapolate future wave climate under climate change context at a regional level and ANNs are used to propagate these projected sea states obtained in deep water to the coast. The use of ANNs allows for the utilization of large amounts of data at a very low computational cost, and the use of Monte Carlo simulations enables the generation of future climate change projections at a regional level. The combination of the two methodologies results in a very accurate (MSE of 0.02 m and 1 s) and computationally inexpensive hybrid model that allows projections of coastal maritime climate considering climate change. This new methodology has been validated and applied in the Western Mediterranean for the long-term regime and for extreme events, obtaining increases in extreme events up to 1.5 m in wave height and up to 1.8 s in wave period by 2050.</p></div>\",\"PeriodicalId\":19457,\"journal\":{\"name\":\"Ocean Modelling\",\"volume\":\"190 \",\"pages\":\"Article 102384\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1463500324000714/pdfft?md5=57413f642e0872fede7ee58226b42d66&pid=1-s2.0-S1463500324000714-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Modelling\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1463500324000714\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324000714","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种研究气候变化背景下未来沿海海洋气候的新模式。这一新模式结合了统计分析、蒙特卡罗模拟和人工神经网络(ANN)。统计分析和蒙特卡洛模拟用于推断区域气候变化背景下的未来波浪气候,而人工神经网络则用于将这些在深水获得的预测海况传播到沿岸。使用 ANN 可以以极低的计算成本利用大量数据,而使用 Monte Carlo 仿真则可以生成区域一级的未来气候变化预测。将这两种方法结合起来,可以得到一个非常精确(MSE 为 0.02 米和 1 秒)、计算成本低廉的混合模式,可以对考虑到气候变化的沿岸海洋气候进行预测。这一新方法已在西地中海的长期制度和极端事件中得到验证和应用,到 2050 年,极端事件的波高增加可达 1.5 米,波长增加可达 1.8 秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel model for the study of future maritime climate using artificial neural networks and Monte Carlo simulations under the context of climate change

This paper proposes a new model to study future coastal maritime climate under climate change context. This new model combines statistical analysis, Monte Carlo simulations and Artificial Neural Networks (ANNs). Statistical analysis and Monte Carlo simulations are used to extrapolate future wave climate under climate change context at a regional level and ANNs are used to propagate these projected sea states obtained in deep water to the coast. The use of ANNs allows for the utilization of large amounts of data at a very low computational cost, and the use of Monte Carlo simulations enables the generation of future climate change projections at a regional level. The combination of the two methodologies results in a very accurate (MSE of 0.02 m and 1 s) and computationally inexpensive hybrid model that allows projections of coastal maritime climate considering climate change. This new methodology has been validated and applied in the Western Mediterranean for the long-term regime and for extreme events, obtaining increases in extreme events up to 1.5 m in wave height and up to 1.8 s in wave period by 2050.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Modelling
Ocean Modelling 地学-海洋学
CiteScore
5.50
自引率
9.40%
发文量
86
审稿时长
19.6 weeks
期刊介绍: The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.
期刊最新文献
Low power computation of transoceanic wave propagation for tsunami hazard mitigation Discrete variance decay analysis of spurious mixing Global tsunami modelling on a spherical multiple-cell grid Accuracy assessment of recent global ocean tide models in coastal waters of the European North West Shelf Enhancing model temperature estimations in shallow, turbid, coastal regions: Mobile Bay, Alabama
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1