{"title":"条件共轭密度的非参数核估计","authors":"Toihir Soulaimana Djaloud, Cheikh Tidiane Seck","doi":"10.1016/j.spl.2024.110154","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a new mathematical formula for the bivariate conditional copula density and proposes kernel-type estimators for it. We demonstrate the consistency and asymptotic normality of these estimators, which also exhibit the best quadratic mean convergence rate when the optimal theoretical bandwidth is selected.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric kernel estimation of conditional copula density\",\"authors\":\"Toihir Soulaimana Djaloud, Cheikh Tidiane Seck\",\"doi\":\"10.1016/j.spl.2024.110154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces a new mathematical formula for the bivariate conditional copula density and proposes kernel-type estimators for it. We demonstrate the consistency and asymptotic normality of these estimators, which also exhibit the best quadratic mean convergence rate when the optimal theoretical bandwidth is selected.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224001238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonparametric kernel estimation of conditional copula density
This paper introduces a new mathematical formula for the bivariate conditional copula density and proposes kernel-type estimators for it. We demonstrate the consistency and asymptotic normality of these estimators, which also exhibit the best quadratic mean convergence rate when the optimal theoretical bandwidth is selected.