通过自动颅骨切除和切除腔分析增强术后脑磁共振成像分割功能

Sobha Xavier P., Sathish P. K., Raju G.
{"title":"通过自动颅骨切除和切除腔分析增强术后脑磁共振成像分割功能","authors":"Sobha Xavier P., Sathish P. K., Raju G.","doi":"10.3844/jcssp.2024.585.593","DOIUrl":null,"url":null,"abstract":": Brain tumors present a significant medical challenge, often necessitating surgical intervention for treatment. In the context of postoperative brain MRI, the primary focus is on the resection cavity, the void that remains in the brain following tumor removal surgery. Precise segmentation of this resection cavity is crucial for a comprehensive assessment of surgical efficacy, aiding healthcare professionals in evaluating the success of tumor removal. Automatically segmenting surgical cavities in post-operative brain MRI images is a complex task due to challenges such as image artifacts, tissue reorganization, and variations in appearance. Existing state-of-the-art techniques, mainly based on Convolutional Neural Networks (CNNs), particularly U-Net models, encounter difficulties when handling these complexities. The intricate nature of these images, coupled with limited annotated data, highlights the need for advanced automated segmentation models to accurately assess resection cavities and improve patient care. In this context, this study introduces a two-stage architecture for resection cavity segmentation, featuring two innovative models. The first is an automatic skull removal model that separates brain tissue from the skull image before input into the cavity segmentation model. The second is an automated postoperative resection cavity segmentation model customized for resected brain areas. The proposed resection cavity segmentation model is an enhanced U-Net model with a pre-trained VGG16 backbone. Trained on publicly available post-operative datasets, it undergoes preprocessing by the proposed skull removal model to enhance precision and accuracy. This segmentation model achieves a Dice coefficient value of 0.96, surpassing state-of-the-art techniques like ResUNet, Attention U-Net, U-Net++, and U-Net.","PeriodicalId":40005,"journal":{"name":"Journal of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Postoperative Brain MRI Segmentation with Automated Skull Removal and Resection Cavity Analysis\",\"authors\":\"Sobha Xavier P., Sathish P. K., Raju G.\",\"doi\":\"10.3844/jcssp.2024.585.593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Brain tumors present a significant medical challenge, often necessitating surgical intervention for treatment. In the context of postoperative brain MRI, the primary focus is on the resection cavity, the void that remains in the brain following tumor removal surgery. Precise segmentation of this resection cavity is crucial for a comprehensive assessment of surgical efficacy, aiding healthcare professionals in evaluating the success of tumor removal. Automatically segmenting surgical cavities in post-operative brain MRI images is a complex task due to challenges such as image artifacts, tissue reorganization, and variations in appearance. Existing state-of-the-art techniques, mainly based on Convolutional Neural Networks (CNNs), particularly U-Net models, encounter difficulties when handling these complexities. The intricate nature of these images, coupled with limited annotated data, highlights the need for advanced automated segmentation models to accurately assess resection cavities and improve patient care. In this context, this study introduces a two-stage architecture for resection cavity segmentation, featuring two innovative models. The first is an automatic skull removal model that separates brain tissue from the skull image before input into the cavity segmentation model. The second is an automated postoperative resection cavity segmentation model customized for resected brain areas. The proposed resection cavity segmentation model is an enhanced U-Net model with a pre-trained VGG16 backbone. Trained on publicly available post-operative datasets, it undergoes preprocessing by the proposed skull removal model to enhance precision and accuracy. This segmentation model achieves a Dice coefficient value of 0.96, surpassing state-of-the-art techniques like ResUNet, Attention U-Net, U-Net++, and U-Net.\",\"PeriodicalId\":40005,\"journal\":{\"name\":\"Journal of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/jcssp.2024.585.593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jcssp.2024.585.593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

:脑肿瘤是一项重大的医学挑战,通常需要通过手术进行治疗。术后脑部磁共振成像的主要重点是切除腔,即肿瘤切除手术后残留在脑部的空隙。切除腔的精确分割对于全面评估手术疗效至关重要,有助于医护人员评估肿瘤切除是否成功。由于图像伪影、组织重组和外观变化等挑战,在术后脑部磁共振成像图像中自动分割手术腔是一项复杂的任务。现有的先进技术主要基于卷积神经网络(CNN),尤其是 U-Net 模型,在处理这些复杂问题时遇到了困难。这些图像错综复杂,加上注释数据有限,因此需要先进的自动分割模型来准确评估切除腔并改善患者护理。在此背景下,本研究介绍了一种用于切除腔体分割的两阶段架构,其中包括两个创新模型。第一个是自动头骨移除模型,可在输入腔体分割模型之前将脑组织从头骨图像中分离出来。第二个是针对切除脑区定制的术后自动切除腔体分割模型。所提出的切除腔体分割模型是一个增强型 U-Net 模型,带有预先训练好的 VGG16 主干网。该模型在公开的术后数据集上进行了训练,并由所提出的颅骨切除模型进行了预处理,以提高精确度和准确性。该分割模型的 Dice 系数值达到了 0.96,超过了 ResUNet、Attention U-Net、U-Net++ 和 U-Net 等最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced Postoperative Brain MRI Segmentation with Automated Skull Removal and Resection Cavity Analysis
: Brain tumors present a significant medical challenge, often necessitating surgical intervention for treatment. In the context of postoperative brain MRI, the primary focus is on the resection cavity, the void that remains in the brain following tumor removal surgery. Precise segmentation of this resection cavity is crucial for a comprehensive assessment of surgical efficacy, aiding healthcare professionals in evaluating the success of tumor removal. Automatically segmenting surgical cavities in post-operative brain MRI images is a complex task due to challenges such as image artifacts, tissue reorganization, and variations in appearance. Existing state-of-the-art techniques, mainly based on Convolutional Neural Networks (CNNs), particularly U-Net models, encounter difficulties when handling these complexities. The intricate nature of these images, coupled with limited annotated data, highlights the need for advanced automated segmentation models to accurately assess resection cavities and improve patient care. In this context, this study introduces a two-stage architecture for resection cavity segmentation, featuring two innovative models. The first is an automatic skull removal model that separates brain tissue from the skull image before input into the cavity segmentation model. The second is an automated postoperative resection cavity segmentation model customized for resected brain areas. The proposed resection cavity segmentation model is an enhanced U-Net model with a pre-trained VGG16 backbone. Trained on publicly available post-operative datasets, it undergoes preprocessing by the proposed skull removal model to enhance precision and accuracy. This segmentation model achieves a Dice coefficient value of 0.96, surpassing state-of-the-art techniques like ResUNet, Attention U-Net, U-Net++, and U-Net.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer Science
Journal of Computer Science Computer Science-Computer Networks and Communications
CiteScore
1.70
自引率
0.00%
发文量
92
期刊介绍: Journal of Computer Science is aimed to publish research articles on theoretical foundations of information and computation, and of practical techniques for their implementation and application in computer systems. JCS updated twelve times a year and is a peer reviewed journal covers the latest and most compelling research of the time.
期刊最新文献
Features of the Security System Development of a Computer Telecommunication Network Performance Assessment of CPU Scheduling Algorithms: A Scenario-Based Approach with FCFS, RR, and SJF Website-Based Educational Application to Help MSMEs in Indonesia Develop A Multi-Split Cross-Strategy for Enhancing Machine Learning Algorithms Prediction Results with Data Generated by Conditional Generative Adversarial Network Improving the Detection of Mask-Wearing Mistakes by Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1