基于多级特征提取 CNN 模型的泥石流易感性评估:中国怒江州案例研究

Xu Wang, Baoyun Wang, Ruohao Yuan, Yumeng Luo, Cunxi Liu
{"title":"基于多级特征提取 CNN 模型的泥石流易感性评估:中国怒江州案例研究","authors":"Xu Wang, Baoyun Wang, Ruohao Yuan, Yumeng Luo, Cunxi Liu","doi":"10.14358/pers.23-00078r2","DOIUrl":null,"url":null,"abstract":"Debris flow susceptibility evaluation plays a crucial role in the prevention and control of debris flow disasters. Therefore, this article proposes a convolutional neural network model named multi-level feature extraction network (MFENet). First, a dual-channel CNN architecture incorporating\n the Embedding Channel Attention mechanism is used to extract shallow features from both digital elevation model images and multispectral images. Subsequently, channel shuffle and feature concatenation are applied to the features from the two channels to obtain fused feature sets. Following\n this, a deep feature extraction is performed on the fused feature sets using a residual module improved by maximum pooling. Finally, the susceptibility index of gullies to debris flows is calculated based on the similarity scores.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Debris Flow Susceptibility Evaluation Based on Multi-level Feature Extraction CNN Model: A Case Study of Nujiang Prefecture, China\",\"authors\":\"Xu Wang, Baoyun Wang, Ruohao Yuan, Yumeng Luo, Cunxi Liu\",\"doi\":\"10.14358/pers.23-00078r2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Debris flow susceptibility evaluation plays a crucial role in the prevention and control of debris flow disasters. Therefore, this article proposes a convolutional neural network model named multi-level feature extraction network (MFENet). First, a dual-channel CNN architecture incorporating\\n the Embedding Channel Attention mechanism is used to extract shallow features from both digital elevation model images and multispectral images. Subsequently, channel shuffle and feature concatenation are applied to the features from the two channels to obtain fused feature sets. Following\\n this, a deep feature extraction is performed on the fused feature sets using a residual module improved by maximum pooling. Finally, the susceptibility index of gullies to debris flows is calculated based on the similarity scores.\",\"PeriodicalId\":211256,\"journal\":{\"name\":\"Photogrammetric Engineering & Remote Sensing\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering & Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.23-00078r2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00078r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

泥石流易发性评估在泥石流灾害防治中起着至关重要的作用。因此,本文提出了一种名为多层次特征提取网络(MFENet)的卷积神经网络模型。首先,采用双通道 CNN 架构,结合嵌入通道注意机制,从数字高程模型图像和多光谱图像中提取浅层特征。随后,对来自两个通道的特征进行通道洗牌和特征串联,以获得融合特征集。然后,使用通过最大池化改进的残差模块对融合特征集进行深度特征提取。最后,根据相似性得分计算出沟谷对泥石流的易感性指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Debris Flow Susceptibility Evaluation Based on Multi-level Feature Extraction CNN Model: A Case Study of Nujiang Prefecture, China
Debris flow susceptibility evaluation plays a crucial role in the prevention and control of debris flow disasters. Therefore, this article proposes a convolutional neural network model named multi-level feature extraction network (MFENet). First, a dual-channel CNN architecture incorporating the Embedding Channel Attention mechanism is used to extract shallow features from both digital elevation model images and multispectral images. Subsequently, channel shuffle and feature concatenation are applied to the features from the two channels to obtain fused feature sets. Following this, a deep feature extraction is performed on the fused feature sets using a residual module improved by maximum pooling. Finally, the susceptibility index of gullies to debris flows is calculated based on the similarity scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ReLAP-Net: Residual Learning and Attention Based Parallel Network for Hyperspectral and Multispectral Image Fusion Book Review ‐ Top 20 Essential Skills for ArcGIS Pro A Surface Water Extraction Method Integrating Spectral and Temporal Characteristics Assessing the Utility of Uncrewed Aerial System Photogrammetrically Derived Point Clouds for Land Cover Classification in the Alaska North Slope GIS Tips & Tricks ‐ USGS Adds 100K Topo Scale to OnDemand Map Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1