像素纹理指数算法及其应用

Xiaodan Sun, Xiaofang Sun
{"title":"像素纹理指数算法及其应用","authors":"Xiaodan Sun, Xiaofang Sun","doi":"10.14358/pers.23-00051r2","DOIUrl":null,"url":null,"abstract":"Image segmentation is essential for object-oriented analysis, and classification is a critical parameter influencing analysis accuracy. However, image classification and segmentation based on spectral features are easily perturbed by the high-frequency information of a high spatial\n resolution remotely sensed (HSRRS) image, degrading its classification and segmentation quality. This article first presents a pixel texture index (PTI) by describing the texture and edge in a local area surrounding a pixel. Indeed.. The experimental results highlight that the HSRRS image\n classification and segmentation quality can be effectively improved by combining it with the PTI image. Indeed, the overall accuracy improved from 7% to 14%, and the kappa can be increased from 11% to 24%, respectively.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"6 25","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Pixel Texture Index Algorithm and Its Application\",\"authors\":\"Xiaodan Sun, Xiaofang Sun\",\"doi\":\"10.14358/pers.23-00051r2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation is essential for object-oriented analysis, and classification is a critical parameter influencing analysis accuracy. However, image classification and segmentation based on spectral features are easily perturbed by the high-frequency information of a high spatial\\n resolution remotely sensed (HSRRS) image, degrading its classification and segmentation quality. This article first presents a pixel texture index (PTI) by describing the texture and edge in a local area surrounding a pixel. Indeed.. The experimental results highlight that the HSRRS image\\n classification and segmentation quality can be effectively improved by combining it with the PTI image. Indeed, the overall accuracy improved from 7% to 14%, and the kappa can be increased from 11% to 24%, respectively.\",\"PeriodicalId\":211256,\"journal\":{\"name\":\"Photogrammetric Engineering & Remote Sensing\",\"volume\":\"6 25\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering & Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.23-00051r2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00051r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像分割对于面向对象的分析至关重要,而分类是影响分析精度的关键参数。然而,基于光谱特征的图像分类和分割很容易受到高空间分辨率遥感(HSRRS)图像高频信息的干扰,从而降低其分类和分割质量。本文首先通过描述像素周围局部区域的纹理和边缘,提出了像素纹理指数(PTI)。确实如此。实验结果表明,通过将 HSRRS 图像与 PTI 图像相结合,可以有效提高 HSRRS 图像的分类和分割质量。事实上,整体准确率从 7% 提高到 14%,卡帕值从 11% 提高到 24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Pixel Texture Index Algorithm and Its Application
Image segmentation is essential for object-oriented analysis, and classification is a critical parameter influencing analysis accuracy. However, image classification and segmentation based on spectral features are easily perturbed by the high-frequency information of a high spatial resolution remotely sensed (HSRRS) image, degrading its classification and segmentation quality. This article first presents a pixel texture index (PTI) by describing the texture and edge in a local area surrounding a pixel. Indeed.. The experimental results highlight that the HSRRS image classification and segmentation quality can be effectively improved by combining it with the PTI image. Indeed, the overall accuracy improved from 7% to 14%, and the kappa can be increased from 11% to 24%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ReLAP-Net: Residual Learning and Attention Based Parallel Network for Hyperspectral and Multispectral Image Fusion Book Review ‐ Top 20 Essential Skills for ArcGIS Pro A Surface Water Extraction Method Integrating Spectral and Temporal Characteristics Assessing the Utility of Uncrewed Aerial System Photogrammetrically Derived Point Clouds for Land Cover Classification in the Alaska North Slope GIS Tips & Tricks ‐ USGS Adds 100K Topo Scale to OnDemand Map Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1