Lifang Yu , Michael Dare Asemoloye , Mario Andrea Marchisio
{"title":"漆酶是酵母中合成基因回路的多任务蛋白质","authors":"Lifang Yu , Michael Dare Asemoloye , Mario Andrea Marchisio","doi":"10.1016/j.synbio.2024.05.007","DOIUrl":null,"url":null,"abstract":"<div><p>Laccase is a multicopper oxidase enzyme that oxidizes a variety of substrates, including polyphenols and polycyclic aromatic hydrocarbons (PAHs). It catalyzes the four-electron reduction of molecular oxygen that results in the production of water as a by-product. Thus, laccase can play an important role in environmental care. Previously, we have successfully expressed <em>Trametes trogii</em> laccase (TtLcc1) in the yeast <em>Saccharomyces cerevisiae</em>. In this work, we have expressed in yeast another laccase, LacA from <em>Trametes</em> sp. AH28-2, and tested its function on PAHs. Yeast cells engineered to produce the two laccases performed efficient PAH degradation. Both TtLcc1 and LacA led to the construction of spatiotemporal fluorescence-pulse generators when combined with a benzoate/salicylate yeast biosensor in a two-population system. Moreover, laccases returned a visual output signal in yeast synthetic circuits—upon reacting with ABTS (2,2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid)). Thus, in <em>S. cerevisiae</em>, laccases are a powerful alternative to fluorescent reporter proteins.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"9 4","pages":"Pages 638-646"},"PeriodicalIF":4.4000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X24000826/pdfft?md5=94b4a3b771a037d03930700fdbebb1a0&pid=1-s2.0-S2405805X24000826-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Laccase is a multitasking protein for synthetic gene circuits in the yeast Saccharomyces cerevisiae\",\"authors\":\"Lifang Yu , Michael Dare Asemoloye , Mario Andrea Marchisio\",\"doi\":\"10.1016/j.synbio.2024.05.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laccase is a multicopper oxidase enzyme that oxidizes a variety of substrates, including polyphenols and polycyclic aromatic hydrocarbons (PAHs). It catalyzes the four-electron reduction of molecular oxygen that results in the production of water as a by-product. Thus, laccase can play an important role in environmental care. Previously, we have successfully expressed <em>Trametes trogii</em> laccase (TtLcc1) in the yeast <em>Saccharomyces cerevisiae</em>. In this work, we have expressed in yeast another laccase, LacA from <em>Trametes</em> sp. AH28-2, and tested its function on PAHs. Yeast cells engineered to produce the two laccases performed efficient PAH degradation. Both TtLcc1 and LacA led to the construction of spatiotemporal fluorescence-pulse generators when combined with a benzoate/salicylate yeast biosensor in a two-population system. Moreover, laccases returned a visual output signal in yeast synthetic circuits—upon reacting with ABTS (2,2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid)). Thus, in <em>S. cerevisiae</em>, laccases are a powerful alternative to fluorescent reporter proteins.</p></div>\",\"PeriodicalId\":22148,\"journal\":{\"name\":\"Synthetic and Systems Biotechnology\",\"volume\":\"9 4\",\"pages\":\"Pages 638-646\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24000826/pdfft?md5=94b4a3b771a037d03930700fdbebb1a0&pid=1-s2.0-S2405805X24000826-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic and Systems Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24000826\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X24000826","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Laccase is a multitasking protein for synthetic gene circuits in the yeast Saccharomyces cerevisiae
Laccase is a multicopper oxidase enzyme that oxidizes a variety of substrates, including polyphenols and polycyclic aromatic hydrocarbons (PAHs). It catalyzes the four-electron reduction of molecular oxygen that results in the production of water as a by-product. Thus, laccase can play an important role in environmental care. Previously, we have successfully expressed Trametes trogii laccase (TtLcc1) in the yeast Saccharomyces cerevisiae. In this work, we have expressed in yeast another laccase, LacA from Trametes sp. AH28-2, and tested its function on PAHs. Yeast cells engineered to produce the two laccases performed efficient PAH degradation. Both TtLcc1 and LacA led to the construction of spatiotemporal fluorescence-pulse generators when combined with a benzoate/salicylate yeast biosensor in a two-population system. Moreover, laccases returned a visual output signal in yeast synthetic circuits—upon reacting with ABTS (2,2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid)). Thus, in S. cerevisiae, laccases are a powerful alternative to fluorescent reporter proteins.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.