Mehboob Hussain , Lian-Fu Wei , Amir Rehman , Muqadar Ali , Syed Muhammad Waqas , Fakhar Abbas
{"title":"用于混合云中工作流调度的成本感知量子启发遗传算法","authors":"Mehboob Hussain , Lian-Fu Wei , Amir Rehman , Muqadar Ali , Syed Muhammad Waqas , Fakhar Abbas","doi":"10.1016/j.jpdc.2024.104920","DOIUrl":null,"url":null,"abstract":"<div><p>Cloud computing delivers a desirable environment for users to run their different kinds of applications in a cloud. Numerous of these applications (tasks), such as bioinformatics, astronomy, biodiversity, and image analysis, are deadline-sensitive. Such tasks must be properly allocated to virtual machines (VMs) to avoid deadline violations, and they should reduce their execution time and cost. Due to the contradictory environment, minimizing the application task's completion time and execution cost is extremely difficult. Thus, we propose a Cost-aware Quantum-inspired Genetic Algorithm (CQGA) to minimize the execution time and cost by meeting the deadline constraints. CQGA is motivated by quantum computing and genetic algorithm. It combines quantum operators (measure, interference, and rotation) with genetic operators (selection, crossover, and mutation). Quantum operators are used for better population diversity, quick convergence, time-saving, and robustness. Genetic operators help to produce new individuals, have good fitness values for individuals, and play a significant role in preserving the evolution quality of the population. In addition, CQGA used a quantum bit as a probabilistic representation because it has higher population diversity attributes than other representations. The simulation outcome exhibits that the proposed algorithm can obtain outstanding convergence performance and reduced maximum cost than benchmark algorithms.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"191 ","pages":"Article 104920"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-aware quantum-inspired genetic algorithm for workflow scheduling in hybrid clouds\",\"authors\":\"Mehboob Hussain , Lian-Fu Wei , Amir Rehman , Muqadar Ali , Syed Muhammad Waqas , Fakhar Abbas\",\"doi\":\"10.1016/j.jpdc.2024.104920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cloud computing delivers a desirable environment for users to run their different kinds of applications in a cloud. Numerous of these applications (tasks), such as bioinformatics, astronomy, biodiversity, and image analysis, are deadline-sensitive. Such tasks must be properly allocated to virtual machines (VMs) to avoid deadline violations, and they should reduce their execution time and cost. Due to the contradictory environment, minimizing the application task's completion time and execution cost is extremely difficult. Thus, we propose a Cost-aware Quantum-inspired Genetic Algorithm (CQGA) to minimize the execution time and cost by meeting the deadline constraints. CQGA is motivated by quantum computing and genetic algorithm. It combines quantum operators (measure, interference, and rotation) with genetic operators (selection, crossover, and mutation). Quantum operators are used for better population diversity, quick convergence, time-saving, and robustness. Genetic operators help to produce new individuals, have good fitness values for individuals, and play a significant role in preserving the evolution quality of the population. In addition, CQGA used a quantum bit as a probabilistic representation because it has higher population diversity attributes than other representations. The simulation outcome exhibits that the proposed algorithm can obtain outstanding convergence performance and reduced maximum cost than benchmark algorithms.</p></div>\",\"PeriodicalId\":54775,\"journal\":{\"name\":\"Journal of Parallel and Distributed Computing\",\"volume\":\"191 \",\"pages\":\"Article 104920\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parallel and Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0743731524000844\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524000844","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Cost-aware quantum-inspired genetic algorithm for workflow scheduling in hybrid clouds
Cloud computing delivers a desirable environment for users to run their different kinds of applications in a cloud. Numerous of these applications (tasks), such as bioinformatics, astronomy, biodiversity, and image analysis, are deadline-sensitive. Such tasks must be properly allocated to virtual machines (VMs) to avoid deadline violations, and they should reduce their execution time and cost. Due to the contradictory environment, minimizing the application task's completion time and execution cost is extremely difficult. Thus, we propose a Cost-aware Quantum-inspired Genetic Algorithm (CQGA) to minimize the execution time and cost by meeting the deadline constraints. CQGA is motivated by quantum computing and genetic algorithm. It combines quantum operators (measure, interference, and rotation) with genetic operators (selection, crossover, and mutation). Quantum operators are used for better population diversity, quick convergence, time-saving, and robustness. Genetic operators help to produce new individuals, have good fitness values for individuals, and play a significant role in preserving the evolution quality of the population. In addition, CQGA used a quantum bit as a probabilistic representation because it has higher population diversity attributes than other representations. The simulation outcome exhibits that the proposed algorithm can obtain outstanding convergence performance and reduced maximum cost than benchmark algorithms.
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.