具有类梁行为的多稳蜂窝结构的均质化模型

IF 0.2 4区 材料科学 Q4 ENGINEERING, MULTIDISCIPLINARY SAMPE Journal Pub Date : 2024-05-01 DOI:10.33599/sj.v60no3.03
D. M. Boston, Andres F. Arrieta
{"title":"具有类梁行为的多稳蜂窝结构的均质化模型","authors":"D. M. Boston, Andres F. Arrieta","doi":"10.33599/sj.v60no3.03","DOIUrl":null,"url":null,"abstract":"Reduced order models facilitate initial design space investigations and enable assessing the benefits of compliant structures utilized for shape adaptability. This work presents a simple model to determine the flexural rigidity of a beam-like, multistable metastructure used as a spar in a hybrid spanwise morphing wing. The model considers the more complex metabeam as a homogeneous beam described by Euler-Bernoulli beam theory with an equivalent flexural rigidity. The analytical model's validity is established by comparing the obtained static and dynamic responses to finite element simulations. A closed-form expression of the flexural rigidity is then given, drawing from the multistable honeycomb's material properties and the metabeam’s geometry. The model's limitations are addressed by examining several specific cases of the metabeam’s morphed configurations and a more complex metabeam structure.","PeriodicalId":49577,"journal":{"name":"SAMPE Journal","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogenization Model for Multistable Honeycomb Metastructures with Beam-like Behavior\",\"authors\":\"D. M. Boston, Andres F. Arrieta\",\"doi\":\"10.33599/sj.v60no3.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reduced order models facilitate initial design space investigations and enable assessing the benefits of compliant structures utilized for shape adaptability. This work presents a simple model to determine the flexural rigidity of a beam-like, multistable metastructure used as a spar in a hybrid spanwise morphing wing. The model considers the more complex metabeam as a homogeneous beam described by Euler-Bernoulli beam theory with an equivalent flexural rigidity. The analytical model's validity is established by comparing the obtained static and dynamic responses to finite element simulations. A closed-form expression of the flexural rigidity is then given, drawing from the multistable honeycomb's material properties and the metabeam’s geometry. The model's limitations are addressed by examining several specific cases of the metabeam’s morphed configurations and a more complex metabeam structure.\",\"PeriodicalId\":49577,\"journal\":{\"name\":\"SAMPE Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAMPE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.33599/sj.v60no3.03\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAMPE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33599/sj.v60no3.03","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

低阶模型有助于对设计空间进行初步研究,并能评估顺从结构在形状适应性方面的优势。这项工作提出了一个简单的模型,用于确定在混合跨向变形翼中用作撑杆的梁状多istable 元结构的抗弯刚度。该模型将更复杂的元梁视为由欧拉-伯努利梁理论描述的具有等效抗弯刚度的均质梁。通过将获得的静态和动态响应与有限元模拟进行比较,确定了分析模型的有效性。然后,根据多稳蜂窝的材料特性和元梁的几何形状,给出了挠曲刚度的闭式表达式。通过研究元梁变形配置的几种具体情况和更复杂的元梁结构,解决了模型的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Homogenization Model for Multistable Honeycomb Metastructures with Beam-like Behavior
Reduced order models facilitate initial design space investigations and enable assessing the benefits of compliant structures utilized for shape adaptability. This work presents a simple model to determine the flexural rigidity of a beam-like, multistable metastructure used as a spar in a hybrid spanwise morphing wing. The model considers the more complex metabeam as a homogeneous beam described by Euler-Bernoulli beam theory with an equivalent flexural rigidity. The analytical model's validity is established by comparing the obtained static and dynamic responses to finite element simulations. A closed-form expression of the flexural rigidity is then given, drawing from the multistable honeycomb's material properties and the metabeam’s geometry. The model's limitations are addressed by examining several specific cases of the metabeam’s morphed configurations and a more complex metabeam structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SAMPE Journal
SAMPE Journal 工程技术-材料科学:综合
CiteScore
0.16
自引率
0.00%
发文量
1
审稿时长
>12 weeks
期刊介绍: SAMPE Journal readers represent the diversity of the advanced materials and processes industry. Our readers are creative and innovative, they publish, they develop concepts, they win patents, they move the world of materials and processes. Join thought leaders – academicians, engineers, scientists, business leaders, researchers, suppliers, manufacturers – and become a reader of the industry’s only technical journal dedicated to advanced materials and processes.
期刊最新文献
Design of Extruder with Metering Section Removed and Replaced with Gear Pump for Machine Space Savings in Large Format Additive Manufacturing Comparative Analysis of Water-Induced Response in 3D-Printed SCF/ABS Composites under Controlled Diffusion Additive Manufacturing Process Simulation of Laser Powder Bed Fusion and Benchmarks Electroplating Additively Manufactured Honeycomb Structures to Increase Energy Absorption Under Quasi-Static Crush Five-Axis Additive Manufacturing of a Thermoset Composite Formulation for Thermal Protection Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1