MI-NiDIA:水处理中絮凝动力学和絮凝体演变建模的可扩展框架

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Software Impacts Pub Date : 2024-05-01 DOI:10.1016/j.simpa.2024.100662
Abayomi O. Bankole , Rodrigo Moruzzi , Rogério G. Negri , Cassio M. Oishi , Afolashade R. Bankole , Abraham O. James
{"title":"MI-NiDIA:水处理中絮凝动力学和絮凝体演变建模的可扩展框架","authors":"Abayomi O. Bankole ,&nbsp;Rodrigo Moruzzi ,&nbsp;Rogério G. Negri ,&nbsp;Cassio M. Oishi ,&nbsp;Afolashade R. Bankole ,&nbsp;Abraham O. James","doi":"10.1016/j.simpa.2024.100662","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a scalable framework for modeling floc evolution and flocculation kinetics in water treatment. Unlike the existing methods that subjects Non-intrusive Dynamic Image Analysis (NiDIA) data to complex mathematical concepts, the proposed software devised a scaling concept for NiDIA data and designed an effective algorithm with the capability to predict varying floc lengths and the underlying kinetics under a broad flocculation conditions (<span><math><mrow><mtext>G</mtext><mi>f</mi></mrow></math></span> and <span><math><mrow><mtext>T</mtext><mi>f</mi></mrow></math></span>). Technically, the designed machine-intelligence framework (MI-NiDIA) involves data preprocessing, automatic parameter selection, validation and prediction of floc length evolution with metrics. For instance, MI-NiDIA-MLP recorded <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of 0.95–1.0 for varying floc length at <span><math><mrow><mtext>G</mtext><mi>f</mi><mspace></mspace><mn>60</mn><mspace></mspace><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100662"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000502/pdfft?md5=6a51bd0a25608cc2c5543ea48ccd7c45&pid=1-s2.0-S2665963824000502-main.pdf","citationCount":"0","resultStr":"{\"title\":\"MI-NiDIA: A scalable framework for modeling flocculation kinetics and floc evolution in water treatment\",\"authors\":\"Abayomi O. Bankole ,&nbsp;Rodrigo Moruzzi ,&nbsp;Rogério G. Negri ,&nbsp;Cassio M. Oishi ,&nbsp;Afolashade R. Bankole ,&nbsp;Abraham O. James\",\"doi\":\"10.1016/j.simpa.2024.100662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a scalable framework for modeling floc evolution and flocculation kinetics in water treatment. Unlike the existing methods that subjects Non-intrusive Dynamic Image Analysis (NiDIA) data to complex mathematical concepts, the proposed software devised a scaling concept for NiDIA data and designed an effective algorithm with the capability to predict varying floc lengths and the underlying kinetics under a broad flocculation conditions (<span><math><mrow><mtext>G</mtext><mi>f</mi></mrow></math></span> and <span><math><mrow><mtext>T</mtext><mi>f</mi></mrow></math></span>). Technically, the designed machine-intelligence framework (MI-NiDIA) involves data preprocessing, automatic parameter selection, validation and prediction of floc length evolution with metrics. For instance, MI-NiDIA-MLP recorded <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of 0.95–1.0 for varying floc length at <span><math><mrow><mtext>G</mtext><mi>f</mi><mspace></mspace><mn>60</mn><mspace></mspace><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>.</p></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"20 \",\"pages\":\"Article 100662\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000502/pdfft?md5=6a51bd0a25608cc2c5543ea48ccd7c45&pid=1-s2.0-S2665963824000502-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个可扩展的框架,用于模拟水处理过程中的絮凝物演变和絮凝动力学。与现有的将非侵入式动态图像分析(NiDIA)数据应用于复杂数学概念的方法不同,本文提出的软件为 NiDIA 数据设计了一个缩放概念,并设计了一种有效的算法,能够预测不同絮凝体长度以及在广泛絮凝条件(Gf 和 Tf)下的基本动力学。从技术上讲,所设计的机器智能框架(MI-NiDIA)包括数据预处理、自动参数选择、验证以及用指标预测絮凝体长度的演变。例如,在 Gf60s-1 条件下,MI-NiDIA-MLP 对不同絮体长度的 R2 值为 0.95-1.0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MI-NiDIA: A scalable framework for modeling flocculation kinetics and floc evolution in water treatment

This paper presents a scalable framework for modeling floc evolution and flocculation kinetics in water treatment. Unlike the existing methods that subjects Non-intrusive Dynamic Image Analysis (NiDIA) data to complex mathematical concepts, the proposed software devised a scaling concept for NiDIA data and designed an effective algorithm with the capability to predict varying floc lengths and the underlying kinetics under a broad flocculation conditions (Gf and Tf). Technically, the designed machine-intelligence framework (MI-NiDIA) involves data preprocessing, automatic parameter selection, validation and prediction of floc length evolution with metrics. For instance, MI-NiDIA-MLP recorded R2 of 0.95–1.0 for varying floc length at Gf60s1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
期刊最新文献
mGFD: CloudGenerator SlabCutOpt: A code for ornamental stone slab cut optimization LandSin: A differential ML and google API-enabled web server for real-time land insights and beyond EnhancedBERT: A python software tailored for arabic word sense disambiguation PostgreSQL: Relational database structures application on capacitated lot-sizing for pharmaceutical tablets manufacturing processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1