ZrSiO3 包晶的结构、电子和弹性特性的第一原理研究:层依赖性、表面终止和压力效应

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Physica Status Solidi B-basic Solid State Physics Pub Date : 2024-05-19 DOI:10.1002/pssb.202400156
Peshal Pokharel, Shashit Kumar Yadav, Nurapati Pantha, Devendra Adhikari
{"title":"ZrSiO3 包晶的结构、电子和弹性特性的第一原理研究:层依赖性、表面终止和压力效应","authors":"Peshal Pokharel, Shashit Kumar Yadav, Nurapati Pantha, Devendra Adhikari","doi":"10.1002/pssb.202400156","DOIUrl":null,"url":null,"abstract":"Zirconium silicate (ZrSiO<jats:sub>3</jats:sub>) perovskite is a promising material for various technological applications. The structural, electronic, and thermodynamic properties of ZrSiO<jats:sub>3</jats:sub> perovskite are studied under different conditions, including pressure and layer configuration variations using density functional theory. The present investigation includes a thorough analysis of 2D perovskite derivatives derived from its basic 3D structure. The bulk and surface‐terminated silicon‐dominant SiO<jats:sub>2</jats:sub> and zirconium‐dominant ZrO compounds are found to be mechanically stable with an anisotropy factor above 1. The calculated indirect‐bandgap values for the ZrO termination and SiO<jats:sub>2</jats:sub> termination are found to be 2.585 and 1.639 eV, respectively. Moreover, the pore size of the SiO<jats:sub>2</jats:sub>‐terminated slab model of ZrSiO<jats:sub>3</jats:sub> is calculated to be 105.39 μm and that for ZrO‐termination to be 129.30 μm. Thus, the material considered for the study can have potential applications in bone regeneration and tissue engineering. Further, the possibilities for modifying ZrSiO<jats:sub>3</jats:sub> for uses in electrical devices, sensors, sustainable energy materials, and even biomedical applications like tissue engineering are intriguingly expanded by the present findings.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First‐Principles Investigations of Structural, Electronic, and Elastic Properties of ZrSiO3 Perovskite: Layer Dependence, Surface Termination, and Pressure Effects\",\"authors\":\"Peshal Pokharel, Shashit Kumar Yadav, Nurapati Pantha, Devendra Adhikari\",\"doi\":\"10.1002/pssb.202400156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zirconium silicate (ZrSiO<jats:sub>3</jats:sub>) perovskite is a promising material for various technological applications. The structural, electronic, and thermodynamic properties of ZrSiO<jats:sub>3</jats:sub> perovskite are studied under different conditions, including pressure and layer configuration variations using density functional theory. The present investigation includes a thorough analysis of 2D perovskite derivatives derived from its basic 3D structure. The bulk and surface‐terminated silicon‐dominant SiO<jats:sub>2</jats:sub> and zirconium‐dominant ZrO compounds are found to be mechanically stable with an anisotropy factor above 1. The calculated indirect‐bandgap values for the ZrO termination and SiO<jats:sub>2</jats:sub> termination are found to be 2.585 and 1.639 eV, respectively. Moreover, the pore size of the SiO<jats:sub>2</jats:sub>‐terminated slab model of ZrSiO<jats:sub>3</jats:sub> is calculated to be 105.39 μm and that for ZrO‐termination to be 129.30 μm. Thus, the material considered for the study can have potential applications in bone regeneration and tissue engineering. Further, the possibilities for modifying ZrSiO<jats:sub>3</jats:sub> for uses in electrical devices, sensors, sustainable energy materials, and even biomedical applications like tissue engineering are intriguingly expanded by the present findings.\",\"PeriodicalId\":20406,\"journal\":{\"name\":\"Physica Status Solidi B-basic Solid State Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi B-basic Solid State Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/pssb.202400156\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400156","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

硅酸锆(ZrSiO3)包晶是一种很有前途的材料,可用于各种技术应用。利用密度泛函理论研究了 ZrSiO3 包晶在不同条件下的结构、电子和热力学性质,包括压力和层构型变化。目前的研究包括对由其基本三维结构衍生出的二维包晶衍生物进行深入分析。研究发现,硅为主的二氧化硅化合物和锆为主的氧化锆化合物具有机械稳定性,各向异性系数大于 1。通过计算发现,ZrO 端面和 SiO2 端面的间接带隙值分别为 2.585 和 1.639 eV。此外,计算得出 SiO2 端的 ZrSiO3 板坯模型的孔径为 105.39 μm,ZrO 端的为 129.30 μm。因此,本研究考虑的材料在骨再生和组织工程方面具有潜在的应用价值。此外,本研究成果还拓展了将 ZrSiO3 改性用于电气设备、传感器、可持续能源材料,甚至组织工程等生物医学应用的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
First‐Principles Investigations of Structural, Electronic, and Elastic Properties of ZrSiO3 Perovskite: Layer Dependence, Surface Termination, and Pressure Effects
Zirconium silicate (ZrSiO3) perovskite is a promising material for various technological applications. The structural, electronic, and thermodynamic properties of ZrSiO3 perovskite are studied under different conditions, including pressure and layer configuration variations using density functional theory. The present investigation includes a thorough analysis of 2D perovskite derivatives derived from its basic 3D structure. The bulk and surface‐terminated silicon‐dominant SiO2 and zirconium‐dominant ZrO compounds are found to be mechanically stable with an anisotropy factor above 1. The calculated indirect‐bandgap values for the ZrO termination and SiO2 termination are found to be 2.585 and 1.639 eV, respectively. Moreover, the pore size of the SiO2‐terminated slab model of ZrSiO3 is calculated to be 105.39 μm and that for ZrO‐termination to be 129.30 μm. Thus, the material considered for the study can have potential applications in bone regeneration and tissue engineering. Further, the possibilities for modifying ZrSiO3 for uses in electrical devices, sensors, sustainable energy materials, and even biomedical applications like tissue engineering are intriguingly expanded by the present findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica Status Solidi B-basic Solid State Physics
Physica Status Solidi B-basic Solid State Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
6.20%
发文量
321
审稿时长
2 months
期刊介绍: physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions. physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.
期刊最新文献
Accelerating Nonequilibrium Green Functions Simulations: The G1–G2 Scheme and Beyond Tip‐Enhanced Raman Spectroscopy Coherence Length of 2D Materials: An Application to Graphene Magnetic Anisotropy of Cr2Te3: Competition between Surface and Middle Layers Progress in Non‐equilibrium Green's Functions VIII (PNGF VIII) Half‐Metallic Ferromagnetism in 2D Janus Monolayers: Mn2GeX (X = As, Sb)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1