稳定的反向 Y2O3/Cu 界面提高了水-气反向转换反应的性能

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL Catalysis Science & Technology Pub Date : 2024-06-17 DOI:10.1039/d4cy00186a
Zhi-Xin Li , Kai Xu , Wei-Wei Wang , Xin-Pu Fu , Chun-jiang Jia
{"title":"稳定的反向 Y2O3/Cu 界面提高了水-气反向转换反应的性能","authors":"Zhi-Xin Li ,&nbsp;Kai Xu ,&nbsp;Wei-Wei Wang ,&nbsp;Xin-Pu Fu ,&nbsp;Chun-jiang Jia","doi":"10.1039/d4cy00186a","DOIUrl":null,"url":null,"abstract":"<div><p>The reverse water–gas shift (RWGS) reaction has tremendous practical significance for solving energy shortage problems. However, its harsh reaction conditions inevitably lead to the sintering of an active metal, which results in the loss of interface sites. Therefore, the construction of efficient and stable catalysts with uniform interfaces for the RWGS reaction is a persisting challenge. In this work, sintered Cu species were applied to fabricate an inverse Y<sub>2</sub>O<sub>3</sub>/Cu catalyst with a notable RWGS reaction performance. This inverse Y<sub>2</sub>O<sub>3</sub>/Cu catalyst sustained a high CO<sub>2</sub> conversion (45.6%) for up to 100 h at 600 °C (GHSV = 400 000 mL g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup>), exceeding the CO<sub>2</sub> conversion of a conventional Cu/Y<sub>2</sub>O<sub>3</sub> catalyst (24.4% for up to 40 h). The CO<sub>2</sub> and H<sub>2</sub> adsorption and activation ability of the inverse Y<sub>2</sub>O<sub>3</sub>/Cu catalyst were greatly optimized, which strikingly accelerated the catalytic reaction. Y<sub>2</sub>O<sub>3</sub>/CuO<sub>x</sub>/Cu interfaces constructed using the sintered Cu species promoted the metal–support interaction of the inverse Y<sub>2</sub>O<sub>3</sub>/Cu catalyst to achieve excellent catalytic stability. This strategy of using sintering Cu species to construct a stable interface provides new insights into the study of efficient and stable catalytic materials in the RWGS reaction.</p></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilized inverse Y2O3/Cu interfaces boost the performance of the reverse water–gas shift reaction†\",\"authors\":\"Zhi-Xin Li ,&nbsp;Kai Xu ,&nbsp;Wei-Wei Wang ,&nbsp;Xin-Pu Fu ,&nbsp;Chun-jiang Jia\",\"doi\":\"10.1039/d4cy00186a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The reverse water–gas shift (RWGS) reaction has tremendous practical significance for solving energy shortage problems. However, its harsh reaction conditions inevitably lead to the sintering of an active metal, which results in the loss of interface sites. Therefore, the construction of efficient and stable catalysts with uniform interfaces for the RWGS reaction is a persisting challenge. In this work, sintered Cu species were applied to fabricate an inverse Y<sub>2</sub>O<sub>3</sub>/Cu catalyst with a notable RWGS reaction performance. This inverse Y<sub>2</sub>O<sub>3</sub>/Cu catalyst sustained a high CO<sub>2</sub> conversion (45.6%) for up to 100 h at 600 °C (GHSV = 400 000 mL g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup>), exceeding the CO<sub>2</sub> conversion of a conventional Cu/Y<sub>2</sub>O<sub>3</sub> catalyst (24.4% for up to 40 h). The CO<sub>2</sub> and H<sub>2</sub> adsorption and activation ability of the inverse Y<sub>2</sub>O<sub>3</sub>/Cu catalyst were greatly optimized, which strikingly accelerated the catalytic reaction. Y<sub>2</sub>O<sub>3</sub>/CuO<sub>x</sub>/Cu interfaces constructed using the sintered Cu species promoted the metal–support interaction of the inverse Y<sub>2</sub>O<sub>3</sub>/Cu catalyst to achieve excellent catalytic stability. This strategy of using sintering Cu species to construct a stable interface provides new insights into the study of efficient and stable catalytic materials in the RWGS reaction.</p></div>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2044475324002934\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324002934","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

反向水气变换(RWGS)反应对于解决能源短缺问题具有巨大的现实意义。然而,其苛刻的反应条件不可避免地会导致活性金属烧结,造成界面位点的损失。因此,为 RWGS 反应构建高效、稳定、界面均匀的催化剂是一项长期的挑战。在这项研究中,烧结铜被用于制造一种具有显著 RWGS 反应性能的反相 Y2O3/Cu 催化剂。这种反相 Y2O3/Cu 催化剂在 600 °C 下可维持长达 100 小时的高二氧化碳转化率(45.6%)(GHSV = 400 000 mL gcat-1 h-1),超过了传统 Cu/Y2O3 催化剂的二氧化碳转化率(40 小时内为 24.4%)。反相 Y2O3/Cu 催化剂对 CO2 和 H2 的吸附和活化能力得到了极大优化,从而显著加快了催化反应的进行。利用烧结 Cu 物构建的 Y2O3/CuOx/Cu 界面促进了反相 Y2O3/Cu 催化剂的金属-支撑相互作用,从而实现了优异的催化稳定性。这种利用烧结Cu物种构建稳定界面的策略为研究RWGS反应中高效稳定的催化材料提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stabilized inverse Y2O3/Cu interfaces boost the performance of the reverse water–gas shift reaction†

The reverse water–gas shift (RWGS) reaction has tremendous practical significance for solving energy shortage problems. However, its harsh reaction conditions inevitably lead to the sintering of an active metal, which results in the loss of interface sites. Therefore, the construction of efficient and stable catalysts with uniform interfaces for the RWGS reaction is a persisting challenge. In this work, sintered Cu species were applied to fabricate an inverse Y2O3/Cu catalyst with a notable RWGS reaction performance. This inverse Y2O3/Cu catalyst sustained a high CO2 conversion (45.6%) for up to 100 h at 600 °C (GHSV = 400 000 mL gcat−1 h−1), exceeding the CO2 conversion of a conventional Cu/Y2O3 catalyst (24.4% for up to 40 h). The CO2 and H2 adsorption and activation ability of the inverse Y2O3/Cu catalyst were greatly optimized, which strikingly accelerated the catalytic reaction. Y2O3/CuOx/Cu interfaces constructed using the sintered Cu species promoted the metal–support interaction of the inverse Y2O3/Cu catalyst to achieve excellent catalytic stability. This strategy of using sintering Cu species to construct a stable interface provides new insights into the study of efficient and stable catalytic materials in the RWGS reaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
期刊最新文献
Back cover Hydrolysis of ammonia borane for green hydrogen production over a Pd/C3N4 nanocatalyst synthesized by electron beam irradiation Back cover Combined experimental and molecular dynamics approach towards a rational design of the YfeX biocatalyst for enhanced carbene transferase reactivity† ZIF-8 pyrolized N-doped carbon-supported iron catalysts for enhanced CO2 hydrogenation activity to valuable hydrocarbons†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1